Автор работы: Пользователь скрыл имя, 20 Марта 2011 в 16:09, реферат
Композиционный материал – конструкционный (металлический или неметаллический) материал, в котором имеются усиливающие его элементы: нитей, волокон или хлопьев более прочного материала. Примеры композиционных материалов: пластик, армированный борными, углеродными, стеклянными волокнами, жгутами или тканями на их основе; алюминий, армированный нитями стали, бериллия.
Общие сведения3
Глава 1 :Свойства некоторых композиционных материалов..................................................................5
Глава 2 :Преимущества и недостатки КМ8
Глава 3 :Область применения8-9
Глава 4 :Техническая характеристика……………………………………………………………………………………………………………………..9
Глава 5 :Технико-экономические преимущества…………………………………………………………………10
Глава 6 :Типы КМ 11-12
Глава 7 :Боропластики, Органопластики, Текстолиты 12-14
Заключение………………………………………………………………………………………………………………………………………….15
Список литературы (источники)………………………………………………………………………………………………………....16
Авиация и космонавтика: В авиации и космонавтике с 1960-х годов существует настоятельная необходимость в изготовлении прочных, лёгких и износостойких конструкций. Композиционные материалы применяются для изготовления силовых конструкций летательных аппаратов, искусственных спутников, теплоизолирующих покрытий шатлов , космических зондов. Всё чаще композиты применяются для изготовления обшивок воздушных и космических аппаратов, и наиболее нагруженных силовых элементов.
Вооружение и военная техника: Благодаря своим характеристикам (прочности и лёгкости) композиционные материалы применяются в военном деле для производства различных видов брони:
Глава 6
Типы композиционных материалов:
1)Композиционные материалы с металлической матрицей.
Композиционные материалы состоят из металлической матрицы (чаще Al, Mg, Ni и их сплавы), упрочненной высокопрочными волокнами (волокнистые материалы) или тонкодисперсными тугоплавкими частицами, не растворяющимися в основном металле (дисперсно-упрочненные материалы). Металлическая матрица связывает волокна (дисперсные частицы) в единое целое. Волокно (дисперсные частицы) плюс связка (матрица), составляющие ту или иную композицию, получили название композиционные материалы.
2)Композиционные материалы с неметаллической матрицей.
Композиционные материалы с неметаллической матрицей нашли широкое применение. В качестве неметаллических матриц используют полимерные, углеродные и керамические материалы. Из полимерных матриц наибольшее распространение получили эпоксидная, фенолоформальдегидная и полиамидная. Угольные матрицы коксованные или пироуглеродные получают из синтетических полимеров, подвергнутых пиролизу. Матрица связывает композицию, придавая ей форму. Упрочнителями служат волокна: стеклянные, углеродные, борные, органические, на основе нитевидных кристаллов (оксидов, карбидов, боридов, нитридов и других), а также металлические (проволоки), обладающие высокой прочностью и жесткостью.
Свойства
композиционных материалов
зависят от состава
компонентов, их сочетания,
количественного соотношения
и прочности связи между
ними.
Армирующие материалы
могут быть в виде волокон,
жгутов, нитей, лент,
многослойных тканей.
Содержание упрочнителя в ориентированных материалах составляет 60-80 об. %, в неориентированных (с дискретными волокнами и нитевидными кристаллами) – 20-30 об. %. Чем выше прочность и модуль упругости волокон, тем выше прочность и жесткость композиционного материала. Свойства матрицы определяют прочность композиции при сдвиги и сжатии и сопротивление усталостному разрушению.
По виду упрочнителя композиционные материалы классифицируют настекловолокниты, карбоволокниты с углеродными волокнами, бороволокниты и органоволокниты.
В
слоистых материалах
волокна, нити, ленты,
пропитанные связующим,
укладываются параллельно
друг другу в плоскости
укладки. Плоские
слои собираются в пластины.
Свойства получаются
анизотропными. Для
работы материала в
изделии важно учитывать
направление действующих
нагрузок. Можно создать
материалы как с изотропными,
так и с анизотропными
свойствами.
Можно укладывать волокна
под разными углами,
варьируя свойства композиционных
материалов. От порядка
укладки слоев по толщине
пакета зависят изгибные
и крутильные жесткости
материала.
Применяется
укладка упрочнителей
из трех, четырех
и более нитей.
Наибольшее применение
имеет структура из
трех взаимно перпендикулярных
нитей. Упрочнители
могут располагаться
в осевом, радиальном
и окружном направлениях.
Трехмерные
материалы могут
быть любой толщины
в виде блоков, цилиндров.
Объемные ткани увеличивают
прочность на отрыв
и сопротивлениесдвигу
по сравнению со слоистыми.
Система из четырех
нитей строится путем
разложения упрочнителя
по диагоналям куба.
Структура из четырех
нитей равновесна,
имеет повышенную
жесткость при
сдвиге в главных
плоскостях.
Однако создание четырехнаправленных
материалов сложнее,
чем трех направленных.
Компонентами композитов являются самые разнообразные материалы – металлы, керамика, стекла, пластмассы, углерод и т.п. Известны многокомпонентные композиционные материалы – полиматричные, когда в одном материале сочетают несколько матриц, или гибридные, включающие в себя разные наполнители. Наполнитель определяет прочность, жесткость и деформируемость материала, а матрица обеспечивает монолитность материала, передачу напряжения в наполнителе и стойкость к различным внешним воздействиям.
Боропластики – композиционные материалы, содержащие в качестве наполнителя борные волокна, внедренные в термореактивную полимерную матрицу, при этом волокна могут быть как в виде мононитей, так и в виде жгутов, оплетенных вспомогательной стеклянной нитью или лент, в которых борные нити переплетены с другими нитями. Благодаря большой твердости нитей, получающийся материал обладает высокими механическими свойствами (борные волокна имеют наибольшую прочность при сжатии по сравнению с волокнами из других материалов) и большой стойкостью к агрессивным условиям, но высокая хрупкость материала затрудняет их обработку и накладывает ограничения на форму изделий из боропластиков. Кроме того, стоимость борных волокон очень высока (порядка 400 $/кг) в связи с особенностями технологии их получения (бор осаждают из хлорида на вольфрамовую подложку, стоимость которой может достигать до 30% стоимости волокна). Термические свойства боропластиков определяются термостойкостью матрицы, поэтому рабочие температуры, как правило, невелики. Применение боропластиков ограничивается высокой стоимостью производства борных волокон, поэтому они используются главным образом в авиационной и космической технике в деталях, подвергающихся длительным нагрузкам в условиях агрессивной среды.
Органопластики – композиты, в которых наполнителями служат органические синтетические, реже – природные и искусственные волокна в виде жгутов, нитей, тканей, бумаги и т.д. В термореактивных органопластиках матрицей служат, как правило, эпоксидные, полиэфирные и фенольные смолы, а также полиимиды. Материал содержит 40–70% наполнителя. Содержание наполнителя в органопластиках на основе термопластичных полимеров – полиэтилена, ПВХ, полиуретана и т.п. – варьируется в значительно больших пределах – от 2 до 70%. Органопластики обладают низкой плотностью, они легче стекло- и углепластиков, относительно высокой прочностью при растяжении; высоким сопротивлением удару и динамическим нагрузкам, но, в то же время, низкой прочностью при сжатии и изгибе.
Важную роль в улучшении механических характеристик органопластика играет степень ориентация макромолекул наполнителя. Макромолекулы жесткоцепных полимеров, таких, как полипарафенилтерефталамид (кевлар) в основном ориентированы в направлении оси полотна и поэтому обладают высокой прочностью при растяжении вдоль волокон. Из материалов, армированных кевларом, изготавливают пулезащитные бронежилеты.
Органопластики находят широкое применение в авто-, судо-, машиностроении, авиа- и космической технике, радиоэлектронике, химическом машиностроении, производстве спортивного инвентаря и т.д.
Полимеры, наполненные порошками. Известно более 10000 марок наполненных полимеров. Наполнители используются как для снижения стоимости материала, так и для придания ему специальных свойств. Впервые наполненный полимер начал производить доктор Бейкеленд (Leo H.Baekeland, США), открывший в начале 20 в. способ синтеза фенолформфльдегидной (бакелитовой) смолы. Сама по себе эта смола – вещество хрупкое, обладающее невысокой прочностью. Бейкеленд обнаружил, что добавка волокон, в частности, древесной муки к смоле до ее затвердевания, увеличивает ее прочность. Созданный им материал – бакелит – приобрел большую популярность. Технология его приготовления проста: смесь частично отвержденного полимера и наполнителя – пресс-порошок - под давлением необратимо затвердевает в форме. Первое серийное изделие произведено по данной технологии в 1916, это – ручка переключателя скоростей автомобиля «Роллс-Ройс». Наполненные термореактивные полимеры широко используются по сей день.
Сейчас применяются разнообразные наполнители так термореактивных, так и термопластичных полимеров. Карбонат кальция и каолин (белая глина) дешевы, запасы их практически не ограничены, белый цвет дает возможность окрашивать материал. Применяют для изготовления жестких и эластичных поливинилхлоридных материалов для производства труб, электроизоляции, облицовочных плиток и т.д., полиэфирных стеклопластиков, наполнения полиэтилена и полипропилена. Добавление талька в полипропилен существенно увеличивает модуль упругости и теплостойкость данного полимера. Сажа больше всего используется в качестве наполнителя резин, но вводится и в полиэтилен, полипропилен, полистирол и т.п. По-прежнему широко применяют органические наполнители – древесную муку, молотую скорлупу орехов, растительные и синтетические волокна. Для создания биоразлагающихся композитов в качество наполнителя используют крахмал.
Текстолиты – слоистые пластики, армированные тканями из различных волокон. Технология получения текстолитов была разработана в 1920-х на основе фенолформальдегидной смолы. Полотна ткани пропитывали смолой, затем прессовали при повышенной температуре, получая текстолитовые пластины. Роль одного из первых применений текстолитов – покрытия для кухонных столов – трудно переоценить.
Основные
принципы получения
текстолитов сохранились,
но сейчас из них
формуют не только
пластины, но и фигурные
изделия. И, конечно,
расширился круг исходных
материалов. Связующими
в текстолитах
является широкий
круг термореактивных
и термопластичных
полимеров, иногда даже
применяются и
неорганические связующие
– на основе силикатов
и фосфатов. В качестве
наполнителя используются
ткани из самых
разнообразных волокон
– хлопковых, синтетических,
стеклянных, углеродных,
асбестовых, базальтовых
и т.д. Соответственно
разнообразны свойства
и применение текстолитов.