Технологии конструкционных материалов

Автор работы: Пользователь скрыл имя, 25 Мая 2010 в 02:59, Не определен

Описание работы

Содержание:
1. Структура стали
2. Модель строения чугуна
3. Марки сталей в зависимости от легирующих элементов
4. Диаграмма железо-цементит. Феррит, ледебурит
5. Выплавка чугуна. Доменная печь и химическая реакция
6. Печь для выплавки стали. Мартеновские и другие электрические печи
7. Цветные сплавы – алюминий, медь, олово и др.
8. Сварка. Основные типы сварки
9. Станки токарные, инструмент и обработка заготовок
10. Станки расточные, инструмент и обработка заготовок
11. Резьбонарезание - инструменты и станки
12. Зубонарезание, станки для нарезки зубчатых колес
13. Электроэрозионные способы обработки

Файлы: 1 файл

Реферат.doc

— 3.14 Мб (Скачать файл)

1. Структура стали. 

     Структура стали зависит от температуры. Чистое железо имеет температуру плавления ~ 1535°; по мере увеличения количества углерода и других компонентов температура  плавления уменьшается и малоуглеродистая сталь с содержанием углерода 0,2% начинает застывать при температуре ~ 1520°. Сначала образуются кристаллы чистого железа - феррита, затем они обогащаются углеродом и при температуре 1490° вся сталь переходит в твердый раствор углерода в железе, называемый аустенитом (Feg), в котором атом углерода располагается в центре атомной кубической решетки железа. Атомы железа располагаются весьма плотно по углам куба решетки и в центре граней, всего 14 атомов (гранецентрированная система атомной решетки, рис. 1); при меньшем содержании углерода переход в аустенит совершается при более низких температурах (до 1400°). Аустенит сохраняется до температуры ~900°; после этого начинается распад его и замена гранецентрированной решетки аустенита более рыхлой решеткой чистого железа — феррита (Fea) имеющей, кроме атома в центре куба, еще атомы по углам куба, всего 9 атомов (рис.2), Почти весь углерод при этом выделяется из раствора.

                                      

     Рис..1. Атомная решетка аустенита               Рис.2. Атомная решетка феррита 

     Распад  аустенита заканчивается при температуре ~700°. Выделившийся углерод входит в химическое соединение с железом, образуя карбид железа Ре3С, называемый цементитом. Таким образом, при более низких температурах сталь состоит из двух компонентов: феррита (почти чистого железа), содержащего ничтожно малое количество углерода (до 0,003%), и цементита. Феррит весьма мягок и пластичен, цементит же очень тверд и хрупок.

     Количество  цементита зависит от содержания в стали углерода. Феррит образует зерна (кристаллиты), занимающие почти весь объем металла, с различной ориентацией в них кристаллов (ячеек) в зависимости от направления кристаллизации; цементит располагается между зернами феррита. При распаде аустенита при температуре 900 — 700°, поскольку более плотная структура аустенита заменяется более рыхлой структурой феррита, происходит увеличение объема, несмотря на понижение температуры. В малоуглеродистых сталях углерода немного, не все ячейки аустенита содержат углерод, поэтому цементит образуется только в некоторых местах. Там вместе с частицами феррита, не имеющими на границах зерен правильного строения, цементит образует смесь — перлит, который размещается между зернами феррита в виде отдельных включений или прослоек. При травлении шлифа стали (при металлографических исследованиях) феррит получает светлую окраску, а перлит — темную (рис.3), что весьма облегчает определение величины ферритовых зерен, а также количества углерода, поскольку феррит почти не растворяет углерода, который весь в виде цементита находится в перлите. Перлит, так же как и цементит, достаточно прочен и упруг. 

 Рис.3. Микроструктура стали

     Зерна феррита получаются различной величины в зависимости от числа очагов кристаллизации. Каждое зерно как  кристаллическое образование резко анизотропно, имея различные сопротивления и модули упругости по разным направлениям. Однако в целом сталь, состоящая из весьма большого числа зерен, ориентированных по разнообразным направлениям, статистически имеет в среднем по всем направлениям одинаковые сопротивления. Сталь при упругой работе ведет себя как типично квазиизотропное тело: чем зерна мельче и чем их число больше, тем сталь более изотропна. Модули упругости феррита по различным направлениям меняются от 29000 до 13 500 кг/мм2, составляя в среднем примерно 19 000 кг1мм2. Предел прочности феррита в среднем равен всего 25 кг1мм2 при относительном удлинении 50%, предел прочности цементита 80 — 100 кг/мм2 при удлинении 1%; таким образом, цементит почти совершенно хрупок. Перлит имеет средние характеристики между ферритом и цементитом.

     Структура низколегированных сталей, также  состоящих из феррита и перлита, аналогична структуре стали 3. Низколегированные  стали содержат мало углерода и повышение  их прочности получается за счет легирующих добавок (марганца, кремния, никеля, хрома и т. д.), которые, как правило, находятся в твердом растворе с ферритом и этим его упрочняют; некоторые из них, кроме, того, образуют карбиды и упрочняют также прослойки между зернами феррита. Распад аустенита и образование феррита в низколегированных сталях происходит при более низких температурах, чем у стали 3 (500 — 450°). 

2. Модель строения чугуна.

     Чугун отличается от стали только наличием графитовых включений, определяющих специальные  свойства чугунов.

     В зависимости от формы графита  и условий его образования различают следующие группы чугунов: серый – с пластинчатым графитом; высокопрочный – с шаровидным графитом; ковкий – с хлопьевидным графитом.

     Схемы микроструктур чугуна в зависимости  от металлической основы и формы  графитовых включений представлены на рис. 4

Рис. 4. 
 
 
 

3. Марки стали в зависимости от легирующих элементов.

   По  химическому составу стали делят  на углеродистые и легированные.

   Углеродистые стали подразделяют на низкоуглеродистые (< 0,3% C), среднеуглеродистые (0,3—0,7% С) и высокоуглеродистые (>0,7% C).

   Легированной называют сталь, в которую вводят с целью придания ей тех или иных свойств один или несколько легирующих элементов.

   Легированные стали с суммарным содержанием легирующих элементов менее 5% называют низколегированными, от 5 до 10% - среднелегированными и более 10% - высоколегированными (в этих сталях углерод не считается легирующим элементом).

   Марки конструкционных сталей обозначают буквами Ст, после которых ставят цифры: Ст1, Ст2 и т. д. С возрастанием номера увеличиваются предел прочности и содержание углерода в стали. Марки качественных конструкционных сталей обозначают двузначным числом, указывающим на среднее содержание углерода. Например, марка Ст07 означает, что в углеродистой качественной стали содержится около 0,7% углерода.

   Инструментальные углеродистые стали обозначают буквой У и цифрами,указывающими среднее содержание углерода в десятых долях процента. Например, маркой У8 обозначают углеродистую инструментальную сталь со средним содержанием 0,8% углерода. Буква А, стоящая в конце марки (У8А, У12А и др.), указывает на высокое качество стали.

   Легированные конструкционные стали  обозначают цифрами и буквами, которые указывают на химический состав стали. При этом первые две цифры обозначают среднее содержание углерода в сотых долях процента; стоящие далее буквы обозначают легирующие элементы. Цифры, следующие за этими буквами, указывают на процентное содержание обозначенного буквой элемента. Для легирующих элементов приняты следующие буквенные обозначения: X — хром, Н — никель, Г — марганец, С — кремний, В — вольфрам, М — молибден, Ф — ванадий, К — кобальт, Т — титан, Ю — алюминий, Д — медь, П — фосфор, Р — бор, Б — ниобий, А — азот, Е — селен, Ц — цирконий.

   Например, марка 35Х обозначает хромовую сталь, содержащую около 0,35% углерода и 1,5% хрома; марка 45Г2 обозначает марганцевую сталь, содержащую около 0,45% углерода и 2% марганца.

   Легированные инструментальные стали маркируют аналогично легированным конструкционным сталям, но среднее содержание углерода указывают в десятых долях процента (если его содержание не превышает 0,9%) или совсем не указывают (если содержание углерода около или более 1%). Быстрорежущие стали маркируют буквой Р, после которой ставят цифры, указывающие на среднее содержание вальфрама в процентах. 

     4. Диаграмма Железо – цементит. Феррит, ледебурит.

     

   Диаграмма состояния железоуглеродистых сплавов, позволяет определять состояние  и структуру сплавов при любой  температуре и при любом содержании углерода в пределах до 6,67%.

   В диаграмме крайняя левая ордината при отсутствии углерода (С=0% соответствует чистому железу, а крайняя правая при С-6,67% — цементиту. Необходимо иметь в виду, что в железоуглеродистых сплавах при охлаждении углерод чаще выделяется не в чистом виде, а в виде цементита, поэтому ось абсцисс ограничена чистым цементитом, содержание углерода в котором равно 6,67% .

   Линию АСО диаграммы называют линией ликвидуса; выше этой линии сплавы находятся  в жидком состоянии. Когда температура  сплава соответствует линии АС, начинается процесс кристаллизации аустенита, а на линии СО — цементита.

   Линию АВЕСР называют линией солидуса, так  как она соответствует моменту  полного затвердения сплава. В  зависимости от температуры и  содержания углерода железоуглеродистые сплавы содержат следующие структурные составляющие:

   аустенит — твердый раствор углерода в гамма-железе. Сталь, имеющая структуру аустенита, немагнитна и обладает большой пластичностью; кристаллы аустенита и жидкий сплав находятся ниже линии ВС;

   феррит — твердый раствор углерода в альфа-железе. Он характеризуется незначительной твердостью, невысокой прочностью, но большой пластичностью; линия GS диаграммы показывает температуры начала выделения феррита из аустенита;

   цементит — химическое соединение железа с углеродом (карбид железа Fе3С); он весьма тверд и хрупок. Сплав цементита и жидкого сплава находится ниже линии СО;

   перлит — механическая смесь феррита и цементита — продукт распада медленно охлаждаемого аустенита при 723 градусах и содержании углерода 0,83%;

   ледебурит — механическая смесь аустенита и цементита (эвтектика) при температуре 1120 градусов и содержании углерода 4,3%;

   графит — свободный углерод в основной массе металла в виде пластинок или зерен. 

5. Выплавка чугуна. Доменная печь и химическая реакция. 

   Чугун – сплав железа и углерода с сопутствующими элементами (содержание углерода более 2,14 %).

     Для выплавки чугуна в доменных печах используют железные руды, топливо, флюсы.

   Топливом для доменной плавки служит кокс, возможна частичная замена газом, мазутом.

   Чугун выплавляют в печах шахтного типа – доменных печах.

   Сущность  процесса получения чугуна в доменных печах заключается в восстановлении оксидов железа, входящих в состав руды оксидом углерода, водородом  и твёрдым углеродом, выделяющимся при сгорании топлива.

   При выплавке чугуна решаются задачи:

   1. Восстановление железа из окислов  руды, науглероживание его и удаление  в виде жидкого чугуна определённого химического состава.

   2. Оплавление пустой породы руды, образование шлака, растворение  в нём золы кокса и удаление его из печи.

   Устройство  и работа доменной печи.

   Доменная  печь (рис. 6) имеет стальной кожух, выложенный огнеупорным шамотным кирпичом. Рабочее пространство печи включает колошник 6, шахту 5, распар 4, заплечики 3, горн 1, лещадь 15. В верхней части колошника находится засыпной аппарат 8, через который в печь загружают шихту. Шихту подают в вагонетки 9 подъемника, которые передвигаются по мосту 12 к засыпному аппарату и, опрокидываясь, высыпают шихту в приемную воронку 7 распределителя шихты. При опускании малого конуса 10 шихта попадает в чашу 11, а при опускании большого конуса 13 – в доменную печь, что предотвращает выход газов из доменной печи в атмосферу. При работе печи шихтовые материалы, проплавляясь, опускаются, а через загрузочное устройство подают новые порции шихты, чтобы весь полезный объём был заполнен. Полезный объем печи – объем, занимаемый шихтой от лещади до нижней кромки большого конуса засыпного аппарата при его опускании.  
Полезная высота доменной печи (Н) достигает 35 м, а полезный объем – 2000…5000 м3.  
В верхней части горна находятся фурменные устройства 14, через которые в печь поступает нагретый воздух, необходимый для горения топлива. Воздух поступает из воздухонагревателя, внутри которого имеются камера сгорания и насадка из огнеупорного кирпича, в которой имеются вертикальные каналы. В камеру сгорания к горелке подается очищенный доменный газ, который, сгорая, образует горячие газы. Проходя через насадку, газы нагревают ее и удаляются через дымовую трубу. Через насадку пропускается воздух, он нагревается до температуры 1000…1200 0С и поступает к фурменному устройству, а оттуда через фурмы 2 – в рабочее пространство печи. После охлаждения насадок нагреватели переключаются.

Информация о работе Технологии конструкционных материалов