Автор работы: Пользователь скрыл имя, 29 Мая 2012 в 19:05, реферат
Первый коммерческий стеклоиономерный цемент ASPA-IV (алюмосиликатный полиакриловый) был разработан A.D. Wilson и В.Е. Kent (1971) и выпущен в начале 70-х годов в США компанией De Trey. С этого времени стеклоиономеры начали рассматриваться как потенциальная замена силикатным цементам, которые были распространены в течение почти 80 лет и затем стали вытесняться композитными материалами. Спектр выпускаемых в настоящее время стеклоиономерных цементов позволяет успешно решать большинство задач практической стоматологии, учитывая при этом не только свойства материалов, но и индивидуальные предпочтения врача, финансовые возможности пациента, материальную и кадровую возможность лечебного учреждения.
Введение стр.2
Состав стеклоиономерных цементов стр.2
Основные свойства стеклоиономерных цементов стр.6
Показания к применению традиционных стеклоиономерных цементов стр.13
Типы стеклоиономерных цементов стр.16
Список литературы стр.17
Стеклоиономерные цементы по своему назначению подразделяются на фиксирующие (для фиксации коронок, мостовидных протезов, других ортопедических конструкций), восстановительные (для пломбирования полостей) и прокладочные (для изолирующих прокладок). Среди прокладочных цементов иногда отдельно выделяют так называемые базисные цементы — для основы под реставрацию композитными материалами. Требования к цементам различных типов несколько отличаются. Двумя основными свойствами, позволившими стеклоиономерным цементам стать одними из наиболее распространенных пломбировочных материалов, являются их способность связываться с твердыми тканями зуба и выделять фтор.
Химическая адгезия к дентину, эмали и цементу без кислотного протравливания
- обеспечивается двумя механизмами. Первый из них основан на том, что карбоксилатные группы макромолекулы полиакриловой кислоты способны образовывать хелатные соединения с кальцием, в частности с кальцием гидроксиапатита дентина и эмали. Считается, что полиакрилатные ионы реагируют со структурой апатита, перемещая кальциевые и фосфатные ионы и создавая промежуточный слой полиакрилатных, фосфатных и кальциевых ионов, или связываясь непосредственно с кальцием апатита. Второй предположительный механизм связи основан на сродстве поликарбоновых кислот к азоту белковых молекул, в частности коллагена, что проявляется абсорбцией полиакриловой кислоты на коллагене дентина. Таким образом, связь с дентином может состоять из ионной связи с апатитом структуры дентина и связи водородного типа с коллагеном. Следует отметить, что последний механизм связи окончательно не доказан.
Однако сила связи стеклоиономерного цемента с твердыми тканями зуба не является достаточно большой. Согласно различным источникам она может достигать 2-7 МПа (немногочисленные исследователи указывают на значение до 8-12 МПа после удаления смазанного слоя), что значительно меньше сил напряжения, развивающегося вследствие усадки композиционного материала, сил связи с тканями зуба адгезивных систем 4-5-го поколения, и тем более меньше сил связи внутри самого дентина . Относительно высокая вязкость традиционных цементов практически исключает возможность их фиксации к эмали и дентину за счет микроретенции. Таким образом, наличие химической связи материала с тканью зуба имеет значение не столько для прочности соединения, сколько для его плотности, обеспечивая непроницаемость контакта цемент—ткань зуба для влаги.
Связь стеклоиономера с эмалью выше, чем с дентином (сила связи с дентином обычно находится в пределах 1 -3 МПа), что, вероятно, можно объяснить более высоким содержанием ионов кальция в эмали. Но клинический опыт показал, что даже такой связи достаточно для успешного восстановления эрозивных повреждений твердых тканей зубов и их дефектов типа полостей V класса.
Химическая
адгезия к большинству
- материалы, используемые для реставрационных работ (композиты, амальгамы, материалы, содержащие эвгенол, к азоту, платине, оксидированной фольге, нержавеющей стали, олову, золотому сплаву), объясняется способностью стеклоиономерных цементов образовывать хелатные и водородные связи с различными субстратами.
Фторзависимый кариесстатический эффект
- основан на двух явлениях, происходящих во время и после затвердевания стеклоиономерного цемента, — выделении фтора и образовании слоя фторсодержащих апатитов на границе между материалом пломбы и тканями зуба.
Рис. 2. Зависимость выделения фтора от времени, прошедшего от начала смешивания порошка и жидкости стеклоиономерного цемента
Известно, что механизм действия фтора при его воздействии непосредственно в полости рта состоит из нескольких слагаемых:
1. Образование более устойчивого к действию кислот фторапатита путем замещения фтором гидроксильной группы гидроксиапатита.
2. Стимуляция минерализации (катализирование включения минеральных компонентов в эмаль, закрепление граней растущего кристалла).
3. Образование на поверхности эмали малорастворимого фторида кальция, который, медленно диссоциируя, поставляет в большом количестве ионы фтора для реакции замещения гидроксильных групп в апатитах эмали.
4. Снижение выработки
кислоты микроорганизмами (блокирование
ферментов микробного
5. Блокирование реакций
синтеза микроорганизмами
6. Изменение электрического потенциала поверхности эмали и препятствие оседанию на ней микробных частиц.
Антибактериальные свойства
- связаны с действием выделяющегося фтора. Доказано, что поверхность пломб из стеклоиономерных цементов имеет более низкий уровень количества бактерий, чем из цинк-фосфатных и цинк-поликарбоксилатных цементов.
Хорошая биосовместимость, нетоксичность.
- Стеклоиономерные цементы обладают довольно высокой биосовместимостью. Неоднократно проводимые тесты с культурой ткани указывали на наличие более слабой реакции клеток на стеклоиономерные цементы, чем на цинкоксидэвгенольный материал или на цинкполикарбоксилатный цемент. В экспериментах in vivo также была продемонстрирована более мягкая реакция на стеклоиономерный цемент, чем на воздействие цинкоксидэвгенольного материала. Свежезамешанный цемент обладает слабой цитотоксичностью, но этот эффект снижается параллельно с отвердеванием материала. Сама по себе полиакриловая кислота не может диффундировать в дентин из-за высокого молекулярного веса. Сразу после внесения материала в полость высокая концентрация кислоты и свободных ионов может привести к усиленному движению воды из пульпы к цементу (рис. 3). Это чревато развитием гиперчувствительности пульпы, а при пересушивании дентина и нарушении соотношения порошок/жидкость в сторону порошка — к ее сильной дегидратации. Однако выполнение всех необходимых требований при работе со стеклоиономерными цементами практически устраняет риск описанных осложнений. Биосовместимость стеклоиономерных цементов позволяет применять их без прокладки или в качестве прокладочного материала, но возможность раздражения пульпы из-за начальной высокой кислотности диктует необходимость использования кальцийсодержащих прокладок при глубоких полостях в сочетании с острым течением кариозного процесса.
Рис. 3. Механизм возникновения боли(гиперчувствительности) при воздействии факторов, вызывающих движение жидкости в дентинных канальцах (высушивания, контакта с высокими концентрациями свободных ионов и т.д.)
Близость коэффициента термического расширения к таковому эмали и дентина.
- Коэффициент температурного расширения стеклоиономерных цементов наиболее близкий к тканям зуба по сравнению с другими стоматологическими пломбировочными материалами. Это предотвращает растрескивание пломбированных зубов или нарушение краевого прилегания пломб при изменениях температуры в полости рта. Теплопроводность стеклоиономерных цементов также наиболее близка к теплопроводности дентина по сравнению с другими пломбировочными материалами.
Высокая прочность на сжатие.
- Прочность на сжатие стеклоиономерных цементов является самой высокой среди всех реставрационных цементов и приближается по значению к таковой у композитных материалов. Это свойство стеклоиономеров позволяет применять их в качестве базы под композитный материал при использовании «сэндвич»-техники, выдвигающей высокие прочностные требования к базисному материалу. Прочность на сжатие восстановительного стеклоиономерного цемента повышается в течение периода времени от 24 ч до 1 года в среднем от 160 МПа до 280 МПа (в отличие от цинк-поликарбоксилатных цементов) за счет инкорпорации ионов в матрицу и образования в ней перекрестных связей Прочность нарастает быстрее, если в ранний период цемент изолирован от влаги
Низкая прочность на диаметральное растяжение
- объясняет хрупкость материала. Данное свойство делает невозможным применение стеклоиономерных цементов в местах значительной нагрузки, особенно разнонаправленной (режущий край, бугры зубов, пара пульпарные штифты). Только в том случае, когда стеклоиономерная реставрация со всех сторон поддержана тканями зуба, она защищена от опасного давления
Низкий модуль эластичности.
- Это свойство стеклоиономерных цементов позволяет применять их в качестве пломбировочных материалов в полостях V класса: в этом случае их способность к пластичным деформациям компенсирует напряжение, накапливающееся в пришеечном участке зуба во время его микродвижений при жевании без разрушения материала и нарушения его краевого прилегания. Стеклоиономерные цементы используемые в качестве прокладок или базы под реставрацию композитными материалами, компенсируют формирующееся при усадке материала внутреннее напряжение, препятствуя деформации пломбы.
Усадка.
- Объемная усадка стеклоиономерных цементов составляет 1,0-3,6 % по истечении 30 сек после их наложения и 2,8-7,1 % — после 24 ч. Сила этой усадки составляет 40 % силы усадки, возникающей во время полимеризации композитных материалов, что обеспечивает возможность до определенной степени компенсации этой силы при одновременном применении с композиционными материалами в технике "сэндвич". Поглощение воды компенсирует присущую стеклоиономерам усадку при отвердевании и отвечает за стабильность размеров пломб. Вода абсорбируется цементом при условии высокой относительной влажности (85% и более) или в присутствии самой воды, что принуждает цемент расширяться. Усадка наблюдается, если цемент пересушивается, что происходит в среде с относительной влажностью, меньшей 80 %.
Растворимость.
- Высокая растворимость в воде — недостаток многих цементов, в том числе — силикатных. Стеклоиономерные цементы не являются исключением. Растворимость материала зависит от цементной композиции, используемой клинической техники и окружающей среды полости рта. Растворение несозревшего цемента может продолжаться до полного отвердевания материала в течение 24 ч Это объясняет необходимость временной защиты поверхности цемента водонепроницаемым слоем. Такая защита должна действовать по крайней мере в течение 1ч — до достижения уровня экстрагирования ионов, позволяющего цементу достигнуть оптимального отвердевания. Растворимость материала также снижается за счет повышения соотношения порошок — жидкость. Минимизировать размывание цемента можно путем строгого следования клинической технике использования материала. Преимуществом стеклоиономерных цементов перед другими цементами является наиболее низкая растворимость в кислотах.