Автор работы: Пользователь скрыл имя, 16 Апреля 2013 в 13:42, курсовая работа
Можно выделить ряд причин применения выборочного наблюдения:
недостаток временных ресурсов (как для проведения обследования, так и для анализа полученного большого объема данных);
недостаток кадровых ресурсов, т.е. квалифицированных специалистов для проведения наблюдения и анализа;
недостаток материальных ресурсов, т.е. слишком дорогостоящее наблюдение;
практическая невозможность учета всех единиц совокупности в связи с их уничтожением в результате наблюдения (например, в случае обследования всхожести партии семян, продолжительности горения электроламп и т.д.);
практическая нецелесообразность наблюдения каждой единицы совокупности (например, определения уровня потребления продукта питания населением региона и т.д.)
Введение 3
Глава 1. Теоретические основы выборочного метода 5
Выборочное исследование 5
Виды отбора при выборочном наблюдении 8
Ошибки наблюдения 13
Способы отбора единиц в выборочную совокупность 14
Средняя и предельная ошибка для показателей средней величины 17
Средняя и предельная ошибка для показателей доли 20
Определение необходимого объема выборки 21
Понятие о малой выборке 22
Заключение 24
При типическом отборе генеральная совокупность разбивается на типические группы единиц по какому–либо признаку (формируются однородные совокупности), а затем из каждой из них производится механический или собственно–случайный отбор . Отбор единиц из типов производится тремя методами: пропорционально численности единиц типических групп, непропорционально численности единиц типических групп и пропорционально колеблемости признака в группах.
В
целях экономии средств данные
по некоторым интересующим
Многофазный
отбор по своей структуре
Все
виды отбора, поскольку они могут
быть повторными или
Таблица1
Вид отбора |
Разновидности отбора в зависимости от | |
повторяемости отбора единиц совокупности |
от величины серий или пропорциональности отбора единиц совокупности в группах | |
Собственно случайный |
1. Собственно случайный повторный 2. Собственно случайный бесповторный |
|
Механический |
1. Механический повторный 2. Механический бесповторный |
|
Серийный |
1. Серийный с повторным отбором серий
2. Серийный с бесповтор- ным отбором серий |
1.1. Серийный с повторным отбором равновеликих серий 1.2. Серийный с повторным отбором неравновеликих серий
2.1. Серийный с бесповторном отбором равновеликих серий 2.2. Серийный с бесповторном отбором неравновеликих серий |
Комбиниро-ванный |
1. Комбинированный с повторным отбором серий
2. Комбинированный с бесповторным отбором серий |
1.1. Комбинированный с повторным отбором равновеликих серий 1.2. Комбинированный с повторным отбором неравновеликих серий 2.1. Комбинированный с отбором равновеликих серий 2.2. Комбинированный с отбором неравновеликих серий |
Типический |
1. Типический с повторным случайном отборе внутри групп
2. Типический при бесповторном случайном отборе внутри групп |
1.1. Типический с повторным отборе внутри групп, пропорциональ- ном объему групп 1.2. Типический с повторным отборе внутри групп, непропорцио- нальном объему групп 1.3. Типический с повторным отборе внутри групп, пропорциональ- ном колеблемости в группах 2.1. Типический с бесповторным случайном отборе внутри групп, пропорциональ- ном объему групп 2.2. Типический с бесповторным случайном отборе внутри групп, непропорцио- нальном объему групп 2.3. Типический бесповторным случайном отборе внутри групп, пропорциональ- ном колеблемости в группах |
1. По охвату единиц совокупности:
2. По времени регистрации фактов:
3. По способу сбора информации:
При большом числе единиц исследуемой совокупности ошибки и неточности могут погашаться, однако, если применяется выборочное наблюдение, тогда ошибки могут существенно повлиять на результаты исследования.
В ходе наблюдения могут возникнуть следующие ошибки:
Определение способа отбора единиц совокупности является важной частью выборочного исследования . Существует множество способов отбора единиц совокупности, все их можно представить в виде трех групп (см. рис. 1.):
Собственно-случайный отбор – выбор единиц совокупности без какой-либо схемы или системы. Может осуществляться методом жеребьевки или с помощью таблицы случайных чисел. При применении данного способа отбора необходимо удостовериться в выполнении принципа рэндомизации.
Отбор с предварительным выделением структуры генеральной совокупности применяется, если исследуется структурированная (распределенная на группы) совокупность. Серийный отбор предполагает выбор одной группы единиц, внутри которой производится сплошное обследование, среди всех групп. Районированный отбор представляет собой определение границ выборочной совокупности с учетом территориальной принадлежности единиц генеральной совокупности. Механический отбор применяется для совокупности, в которой каждой единице присвоен отдельный номер, а выбор осуществляется пропорционально количеству единиц, например, каждая десятая единица и др.
Ступенчатый или смешанный отбор применяется в случае поэтапного проведения выборочного наблюдения, когда на разных этапах наблюдения используют различные варианты отбора единиц.
Все приведенные выше способы, с точки зрения математической статистики, делятся на повторные и бесповторные. Повторный отбор предоставляет единице совокупности возможность быть отобранной еще один или несколько раз при условии сохранения принципа рэндомизации. Соответственно, бесповторным называется отбор, при котором единица, будучи однажды исследованной, исключается из генеральной совокупности. Тем самым, устраняется возможность ее повторного отбора в качестве представителя генеральной совокупности . Отличие в методах повторного и бесповторного отбора математически отображают с помощью поправочного коэффициента на бесповторность (К):
(1), где
n – численность единиц выборочной совокупности; N – численность единиц генеральной совокупности.
В математической статистике разработана методика анализа выборочного наблюдения случайных явлений. Основой такого анализа является предположение о множественности производимых выборочных наблюдений, и, как следствие, построение целого ряда распределения вероятностей различных характеристик полученных выборок. Предполагается осуществление только отдельного выборочного наблюдения.
Результаты выборочного
Применение выборочного
Еще одним определителем степени точности выводов служит их последующее применение. То есть, чем более корректные данные о генеральной совокупности требуется получить, тем дальше «раздвигаются» пределы интервала. Например, если исследование проводится в целях обучения студентов методике выборки, то принимается условная (низкая) степень точности. Тогда как, исследование, необходимое для государственного управления, предполагает высокую степень точности.
Обобщающей характеристикой
Поскольку точные характеристики генеральной совокупности не определены, то указать единичное значение расхождения между средними для выборочной и генеральной совокупностей невозможно. В связи с этим, определяют средний размер всех возможных ошибок () выборочного наблюдения. Другими словами, показатель называется средняя ошибка выборочной средней. Для повторного отбора :
(2),где
– дисперсия выборочной совокупности;
n – численность единиц выборочной совокупности .
С применением поправочного коэффициента на бесповторность средняя ошибка выборочной средней для бесповторного отбора будет определяться следующим образом:
(3), где
– дисперсия выборочной совокупности;
N – численность единиц генеральной совокупности.
То есть, средняя в генеральной совокупности может отклониться от средней в выборочной совокупности в сторону увеличения или уменьшения на величину..
Предельная ошибка выборочной средней () определяет границы, в пределах которых может колебаться среднее значение генеральной совокупности относительно среднего значения выборки. Различия между средней и предельной ошибкой обусловлены величиной коэффициента доверия t.
Суть этого коэффициента можно определить как ряд следующих заключений:
Таким образом, количественное выражение t, в конечном итоге, является мерой «доверия» к реальности выборочных данных. Тогда предельная ошибка выборочной средней () будет определяться следующим образом:
. (4)
Отсюда, среднее значение генеральной совокупности имеет вид:
В статистике существуют наиболее распространенные уровни вероятностей, например: 0,954; 0,997 и др. Это означает, что, соответственно, в 6 случаях из 1000 и в 3 случаях из 1000 ошибка выборки может превысить пределы, определенные выборочным наблюдением.
На рисунке 2. затемненная площадь под кривой показывает вероятность появления средней ошибки выборочной средней. Площадь фигуры, образованной перпендикулярами, опущенными на ось абсцисс, и кривой плотности вероятности определяет вероятность появления предельной ошибки выборочной средней .