Автор работы: Пользователь скрыл имя, 18 Марта 2013 в 07:43, реферат
Ряды динамики – статистические данные , отображающие развитие во времени изучаемого явления . Их также называют динамическими рядами , временными рядами .
В каждом ряду динамики имеется два основных элемента :
показатель времени t ;
соответствующие им уровни развития изучаемого явления y;
В качестве показаний времени в рядах динамики выступают либо определенные даты (моменты), либо отдельные периоды (годы , кварталы, месяцы, сутки).
Для количественной оценки динамики
социально – экономических
В основе расчета показателей рядов
динамики лежит сравнение его
уровней . В зависимости от применяемого
способа сопоставления
Для расчета показателей динамики на постоянной базе каждый уровень ряда сравнивается с одним и тем же базисным уровнем . Исчисляемые при этом показатели называются базисными . Для расчета показателей динамики на переменной базе каждый последующий уровень ряда сравнивается с предыдущим . Такие показатели называются цепными .
Способы расчета показателей динамики рассмотрим на данных товарооборота магазина в 1987 – 1991 гг. (см. таб. 2).
Абсолютный прирост –
Абсолютный прирост может
Между базисными и абсолютными приростами существует связь : сумма цепных абсолютных приростов равна базисному абсолютному приросту последнего ряда динамики (формула 3):
Ускорение – разность между абсолютным приростом за данный период и абсолютным приростом за предыдущий период равной длительности (формула 4):
Показатель абсолютного
Темп роста – распространенный статистический показатель динамики . Он характеризует отношение двух уровней ряда и может выражаться в виде коэффициента или в процентах .
Если темп роста больше единицы (или 100%) , то это показывает на увеличение изучаемого уровня по сравнению с базисным . Темп роста ,равный единице (или 100%) , показывает , что уровень изучаемого периода по сравнению с базисным не изменился . Темп роста меньше единицы (или 100%) показывает на уменьшение уровня изучаемого периода по сравнению с базисным. Темп роста всегда имеет положительный знак .
Между базисными и цепными темпами роста имеется взаимосвязь : произведение последовательных цепных темпов роста равно базисному темпу роста , а частное от деления последующего базисного темпа роста на предыдущий равно соответствующему цепному темпу роста .
Темпы прироста характеризуют абсолютный
прирост в относительных
Между показателями темпа роста и темпа прироста существует взаимосвязь , выраженная формулами 9 и 10:
(%) =
(%) -- 100
(при выражении темпа роста в процентах).
=
-- 1
(при выражении темпа роста в коэффициентах).
Формулы (7) и (8) используют для нахождения темпов прироста по темпам роста .
Важным статистическим показателем динамики социально – экономических процессов является темп наращивания , который в условиях интенсификации экономики измеряет наращивание во времени экономического потенциала .
Вычисляются темпы наращивания Тн делением цепных абсолютных приростов на уровень , принятый за постоянную базу сравнения , по формуле 11:
2.2 Средние показатели в рядах динамики
Для получения обобщающих показателей динамики социально -- экономических явлений определяются средние величины : средний уровень , средний абсолютный прирост , средний темп роста и прироста и пр.
Средний уровень ряда динамики характеризует типическую величину абсолютных уровней .
В интервальных рядах динамики средний уровень у определяется делением суммы уровней на их число n (формула 12):
В моментном ряду динамики с равноотстоящими датами времени средний уровень определяется по формуле 13:
В моментном ряду динамики с неравноотстоящими датами средний уровень определяется по формуле 14:
где – уровни ряда динамики , сохранившиеся без изменения в течение промежутка времени .
Средний абсолютный прирост представляет собой обобщенную характеристику индивидуальных абсолютных приростов ряда динамики . Для определения среднего абсолютного прироста сумма цепных абсолютных приростов делится на их число n (формула 15):
Средний абсолютный прирост может определяться по абсолютным уровням ряда динамики . Для этого определяется разность между конечным и базисным уровнями изучаемого периода , которая делится на m – 1 субпериодов (формула 16):
Основываясь на взаимосвязи между цепными и базисными абсолютными приростами , показатель среднего абсолютного прироста можно определить по формуле 17:
Средний темп роста – обобщающая характеристика индивидуальных темпов роста ряда динамики . Для определения среднего темпа роста применяется формула 18:
где Тр1 , Тр2 , ... , Трn -- индивидуальные (цепные) темпы роста (в коэффициентах), n -- число индивидуальных темпов роста.
Средний темп роста можно определить и по абсолютным уровням ряда динамики по формуле 19:
На основе взаимосвязи между цепными и базисными темпами роста средний темп роста можно определить по формуле 20:
Средний темп прироста можно определить на основе взаимосвязи между темпами роста и прироста . При наличии данных о средних темпах роста для получения средних темпов прироста используется зависимость , выраженная формулой 21:
(при выражении среднего темпа роста в коэффициентах)
Изучение тренда включает в себя два основных этапа :
Проверка на наличие тренда в ряду динамики может быть осуществлена по нескольким критериям .
Если в ряду динамики общая тенденция к росту или снижению отсутствует , то количество серий является случайной величиной , распределенной приближенно по нормальному закону (для n > 10) . Следовательно , если закономерности в изменениях уровней нет , то случайная величина R оказывается в доверительном интервале
Параметр t назначается в соответствии с принятым уровнем доверительной вероятности Р.
Среднее число серий вычисляется по формуле 22 :
Среднее квадратическое отклонение числа серий вычисляется по формуле 23 :
здесь n -- число уровней ряда .
Выражение для доверительного интервала приобретает вид
Полученные границы доверительного интервала округляют до целых чисел , уменьшая нижнюю границу и увеличивая верхнюю .
Непосредственное выделение тренда может быть произведено тремя методами .
При нечетном сглаживании полученное среднее арифметическое значение закрепляют за серединой расчетного интервала , при четном это делать нельзя . Поэтому при обработке ряда четными интервалами их искусственно делают нечетными , для чего образуют ближайший больший нечетный интервал , но из крайних его уровней берут только 50%.
Недостаток методики
сглаживания скользящими
. (24)
Для последней точки расчет симметричен .