Автор работы: Пользователь скрыл имя, 20 Марта 2011 в 20:37, реферат
Изменение социально-экономических явлений во времени изучается статистикой методом построения и анализа динамических рядов. Ряды динамики - это значения статистических показателей, которые представлены в определенной хронологической последовательности.
(9.21)
Автокорреляцию в рядах можно устранить, коррелируя не сами уровни, а так называемые остаточные величины (разность эмпирических и теоретических уровней). В этом случае корреляцию между остаточными величинами можно определить по формуле
(9.22)
Анализ рядов динамики предполагает и исследование сезонной неравномерности (сезонных колебаний), под которыми понимают устойчивые внутригодовые колебания, причиной которых являются многочисленные факторы, в том числе и природно-климатические. Сезонные колебания измеряются с помощью индексов сезонности, которые рассчитываются двумя способами в зависимости от характера динамического развития.
При относительно неизменном годовом уровне явления индекс сезонности можно рассчитать как процентное отношение средней величины из фактических уровней одноименных месяцев к общему среднему уровню за исследуемый период:
(9.23)
В условиях изменчивости годового уровня индекс сезонности определяется как процентное отношение средней величины из фактических уровней одноименных месяцев к средней величине из выровненных уровней одноименных месяцев:
(9.24)
Массовые явления,
как видели в предыдущих темах, развиваются
в пространстве и во времени. Изучение
происходящих при этом изменений является
одной из важнейших задач статистики.
Процесс развития массового явления во
времени принято возникать динамикой,
а а показатели, характеризующие это развитие
– статистическими рядами динамики.
Следовательно:
Рядами динамики называются статистические
данные, отображающие развитие явления
в последовательные моменты или периоды
времени.
Дело в том, что изменения массового явления
во времени есть результат взаимодействия
разнообразных причин и условий. Отсюда
динамика отрицает совокупное действие
их через время как собирательный фактор
всех других.
В любом ряду динамики имеется два основных
элемента: 1) показатель времени t; 2) соответствующие
им уровни ряда (уровни развития изучаемого
явления) .
В качестве показателя времени в рядах
динамики выступают или определенные
даты (моменты) времени, или отдельные
периоды времени (годы, кварталы, месяца,
сутки).
Уровни рядов динамики количественную
оценку (меру) развития во времени исследуемого
явления. Они могут выражаться абсолютными,
относительными, средними или приростными
величинами.
Ряды динамики, как правило, представляют
в виде таблицы или графически. При графическом
изображении ряда динамики (динамического
ряда) на оси абсцисс строится шкала времени,
а на оси ординат – шкала уравнений ряда
(арифметическая или иногда логарифмическая).
Изучение рядов динамики осуществляется
в разных направлениях анализа состояния
.
Закономерности в изменении уравнений
ряда в одних проявляется довольно наглядно,
в других они могут затушевываться влиянием
случайных или других причин. Во всех
случаях одной из первых задач статистики
исследования является выявление основной
тенденции (основного направления) изменения
уровней ряда, именуемой «трендом» а чаще
количественная оценка темпов развития.
С помощью рядов
динамики развития массовых явлений
изучаются в следующих основных
направлениях: 1) характеристики уровней
развития изучаемых явлений во времени;
2) изменение динамики изучаемых
явлений посредством системы
статистических показателей; 3) выявление
и количественная оценка основных тенденций
развития (периоды); 4) изучение периодических
колебаний: 5) интерполяция и дистрополяция
Ряды динамики различаются по видам.
а) В зависимости от формы выражения уровней
(или вида приводимых обобщающих показателей)
ряды динамики обычно подразделяют на
ряды
1) абсолютных 2) относительных
3) средних 4) приростных величин
(показателей).
Исходными, первоначальными являются
ряды динамики абсолютных величин, ряды
динамики относительных и средних величин
составляются на основе рядов динамики
абсолютных величин и рассматриваются
как производные.
б) В зависимости от формы выражения показателя
времени в статике различают 1) моментные
ряды и 2) интервальные ряды.
Моментные ряды: динамически отображают
состояние изучаемых явлений на определенные
даты (моменты) вмени Например, на начало
года, или квартала, ли месяца. Так основные
фонды учитываются по состоянию на 1-е
число каждого месяца, перепись населения
страны проводится по состоянию на критический
момент времени.
В моментных рядах динамики период месяц
датами (моментами времени ) называются
интервалами ряда. Величина интервала
зависит от характера явлений: для явлений,
быстро изменяющихся, ряды динамики должны
иметь более короткие интервалы.
Особенностью моментного ряда динамики
является то, что в его уровни могут входить
одни и те же единицы изучаемой совокупности.
Так, основная часть работников предприятия,
составляющих списочную численность на
01.01.1996 г., продолжающая работать в течение
данного года, будет отображен в уравнениях
последующих периодов (например на 01.02.06,
01.03.06 и т.д.)
Интервальным
называется такой ряд, уровни которого
характеризуют величину изучаемого показателя
за определенный период времени. Например,
объем производства продукции можно учитывать
за утки, месяц, квартал, полугодие, год
и т.д.
В интервальном ряду динамики каждые его
уровень складывается из данных за более
короткие интервалы времени (суммируя
объемы выпуска продукции за каждый день
месяца получаем данные за данный месяц
и т.д.). Уровни такого ряда можно и дробить.
Зная объем производства продукции за
месяц и количество рабочих дней путем
деления первой величины на вторую можно
получить представление о среднесуточном
производстве.
Из рассмотренной нетрудно подметить
разницу понятия «интервал» и моментном
и интервальном рядах. В интервальном
ряду интервал – это промежуток, за который
обобщены приводимые сведения. В интервальном
ряду величина интервала – это накопленный
итог учета результатов развития явления
во времени.
Необходимо иметь в виду следующее: вид
ряда динамики обусловлен не техникой
учета, а существом изучаемого явления.
Так, состояние явления можно учитывать
только моментально, а процесс развития
характеризуется по периодам.
Итак, показатели интервальных рядов динамики
обладают свойством суммарности, а показатели
моментальных рядов такого свойства не
имеют. Отсюда порядок величин в интервальном
ряду определяется размером интервала
(годовой объем продукции в 12 раз больше
среднемесячных данных и в 360 раз больше
среднесуточных). А в моментальном ряду
порядок величин не зависит от размера
интервала.
Свойство суммарности интервальных рядов
позволяет строить ряды динамики с нарастающими
интервалами. Их применение обусловлено
потребностями отображения результатов
развития изучаемого явления (показателя)
не только за данный отдельный период,
но и с учетом предшествующих периодов.
Например, ввод в действие основных фондов
за пятилетку.
Как узнали выше, на основе рядов динамики
абсолютных величин могут быть изучены
ряды динамики относительных и средних
величин. Важнейшими разновидностями
статических рядов динамики относительных
величин являются ряды, характеризующие
темпы динамики, изменение структуры,
изменение интервальности.
Нередко в статистических исследованиях
в одной таблице приводят ряды динамики
абсолютных, относительных и средних величин.
Несопоставимость статистических данных во времени (уровней рядов динамики) может быть обусловлена различными причинами:
Вопрос о обеспечении
сопоставимости может решаться по-разному
в зависимости от целей исследования
и причин возникновения непоправимости.
Для обеспечения сопоставимости
осуществляются дополнительные расчеты;
изучаются все изменения, происшедшие
за анализируемый период в пределах явлений.
Например, данные за прошлые годы при территориальных
изменениях пересчитываются в новых границах.
Аналогично поступают при изменении в
методах расчетов показателей, изменении
цен и т.д.
Один и тот же ряд динамики для одних цепей
является сопоставимым, а для других может
быть несопоставимым.
Следовательно, прежде чем анализировать
ряды динамики, надо исходя из цели исследования
убедиться в сопоставимости уровней ряда
и, если имеет место несопоставимость,
добиться, при возможности сопоставимости
дополнительными расчетами.
Одним из приемов обеспечения сопоставимость
рядов динамики является так называемо
смыкание рядов динамики.
Под смыканием рядов динамики понимают
объединение в один ряд (более длинный)
двух или несомых рядов, уровни которых
исчислены по разной методологии или в
разных границах. При этом для осуществления
смыкания необходимо, чтобы для одного
из периодов (переходного) имеешь данные,
исчисленные по разной методологии (или
в разных границах).
Для переходного периода определяется
коэффициент соотношения двух уровней
(отыщите уровни по старой методологии
или границе и уровни по новой методологии
или границе). Разделив этот коэффициент
уровни первого ряда (по старой методологии
или территории), можно построить ряд динамики
сопоставимых уровней (объединяющих уровни
рассматриваемых рядов).
Для количественной оценки рядов динамики применяются различные статистические показатели (характеристики):
Различают начальный
уровень (y1), показывающий величину первого
члена ряда и конечный (yn), показывающий
величину последнего члена ряда.
Обычно анализ рядов динамики начинается
с определения среднего уровня.
Средний уровень ряда даёт обобщённую
характеристику показателя за весь период,
охватываемый рядом динамики.
Средний уровень в интервальном и моментальном
рядах динамики определяется по разному.
В интервальном ряду с равными периодами
(интервалами) средний уровень рассчитывается
по формуле простой средней арифметической.
Например, средний уровень добычи нефти,
выплавки чугуна и так далее ежегодно
(за месяц) за рассматриваемый период.
Таким образом, чтобы исчислить среднюю
из интервального ряда, нужно сложить
члены ряда и разделить полученную сумму
на их число.
Эта средняя известна в статистике как
Средняя характеристическая для моментального
ряда.
Таким образом, средняя хронологическая
из моментального ряда динамики равняется
сумме показателей этого ряда (при этом
начальный и конечный уровни должны быть
взяты в половинном размере), делённой
на число показателей без одного.
В случае неравных интервалов времени
между фактами (моментами, датами) средний
уровень ряда определяется в следующей
последовательности: 1) определяется средние
за интервалы, ограниченные двумя датами;
2) расчёт из них общей средней; при этом
средние за более длительные интервалы
должны быть взяты с весами, кратные их
длине.
Пример. Численность работников предприятия
составила на 1.01 - 1100 человек; на 15.02 – 1120
человек; на 22.03 – 1150 человек, на 31.03 тоже
1150 человек.
б) Средний уровень ряда, как любая средняя
величина, является обобщающим показателем.
Вместе с тем при изучении рядов динамики
важно проследить за направлением и размером
изменений уровней во времени. С этой целью
для динамических рядов (рядов динамики)
рассчитываются такие статические показатели,
как: 1) темпы роста. 2) абсолютные приросты.
3) темпы прироста. 4) абсолютная величина
одного процента роста.
Темпы роста(темпы динамики ТР)
– это относительный статистический показатель,
определяемый как отношение одного уровня
к другому одного и того же и показывающий
во сколько раз один уровень больше(меньше)
другого.
В зависимости от выбора базы сравнения
темпы роста рассчитываются как цепные,
когда каждый уровень сопоставляется
с уровнем предыдущего периода и как базисные,
когда все уровни ряда сопоставляются
с уровнем одного какого-то периода, принятого
за базу сравнения (как правило, это бывает
начальный уровень ряда, но может быть
и уровень любого другого периода)
Соответственно цепные темпы роста
(Трцi) характеризуют интенсивность развития
явления в каждом отдельном периоде, а
базисное – интенсивности развития за
любой отрезок времени (отделяющий данный
уровень от базисного).
В том и другом случае темпы роста могут
быть выражены в виде коэффициентов, если
основание отношения принимается за единицу,
и в виде процентов, если основание принимается
за 100.
Между цепным
(Трцi) и базисным (Трбi) темпами роста
существует непосредственная связь, позволяющая
в случае необходимости переходит от одних
к другим, то есть от цепных темпов к базисным
и наоборот:
1. произведение цепных темпов роста равно
базисному
2. результат деления двух базисных темпов
роста равны цепному (промежуточному)
темпу роста
Показатели темпов облегчают анализ, показывают
направления развития: если темпы больше
1 или 100%, то уровни, характеризующие явления,
возрастают, если же меньше 1 или 100%, то
сокращаются.
Темпы роста поэтому в статистике широко
используются при анализе динамики массовых
явлений и процессов. Однако темпы роста
– это относительная величина и, пользуясь
этим для характеристики интенсивности
и направления развития никогда не стоит
забывать об абсолютных уровнях развития,
которые скрываются за темпами роста.
Например, рост числа абонентов сети ГТС
в 2 раза соответственно с 10 тысячами и
100 тысячами имеет различные экономические
содержания.
Поэтому типы роста дополняют показателями
об абсолютных и относительных приростах,
абсолютным значениям 1%
прироста.
Абсолютный прирост (∆y) рассчитывается
как разность между двумя уровнями ряда
и выражается в единицах измерения исходной
информации.
Базисный абсолютный прирост (∆yб) исчисляется
как разность между сравниваемым уровнем
yi и уровнем, принятым за постоянную базу
сравнения y0 по формуле .
Цепной абсолютный прирост (∆уц) – это
разность между сравниваемым уровнем
yi и уровнем, который ему предшествует
yi-1
Абсолютный прирост показывает на смысл
единиц (по принятой для уровней рода единиц
измерения), увеличивается или уменьшается
уровень, характеризует изучаемое явление,
соответственно с начал рассматриваемого
или предшествующего периода.
Следовательно абсолютный прирост может
иметь знак “+” (при увеличении уровней)
или “-” (при уменьшении уровней).
Для относительной оценки значений абсолютных
приростов рассчитываются показатели
цепных приростов.
При анализе развития изучаемого явления во времени (или рядов динамики) часто возникает необходимость дать особенную характеристику направления и интенсивности процесса развития за длительный период. Для этого исчисляю также обобщающие статистические показатели, как средние величины . Средние величины могут рассчитываться для каждого из рассмотренных выше статистических показателей динамики.