Автор работы: Пользователь скрыл имя, 07 Декабря 2014 в 18:44, реферат
Использование возможностей современной вычислительной техники, оснащенной пакетами программ машинной обработки статистической информации на ЭВМ, делает практически осуществимым оперативное решение задач изучения взаимосвязи показателей биржевых ставок методами корреляционно-регрессионного анализа.
При машинной обработке исходной информации на ЭВМ, оснащенных пакетами стандартных программ ведения анализов, вычисление параметров применяемых математических функций является быстро выполняемой счетной операцией.
Доверительные границы коэффициента регрессии b1, с вероятностью 0,95, для которой значение критерия Стьюдента равно 2,18, составляют 2,26 ± 2,18·0,658 или от 0,826 до 3,694.
Очень широкие границы объясняются малой численностью единиц совокупности. Из (8.44) следует, что при росте объема совокупности в q раз ошибка коэффициента регрессии, как и ошибка выборочной оценки средней величины, уменьшится в √q̅ раз. При 400 единицах совокупности ошибка была бы меньше в 5 раз.
Если значение критерия t оказывается ниже критического для вероятности нулевой гипотезы 0,05, влияние фактора считается не доказанным надежно, и при работе программ ЭВМ с отсевом несущественных факторов по t-критерию данный фактор автоматически исключается из уравнения регрессии.
Средняя ошибка оценки коэффициента множественной корреляции mR определяется по формуле
. (8.45)
Оценка существенности и расчет доверительных границ генерального коэффициента корреляции осуществляются так же, как и для коэффициента регрессии. Если значение R близко к единице, необходимо использовать преобразование Фишера, рассмотренное ранее в п. 8.2. Существуют также специальные таблицы критических значений коэффициента корреляции для заданного числа степеней свободы и вероятности нулевой гипотезы (см. приложение, табл. 5).
Корреляционно-регрессивные модели (КРМ) и их применение в анализе и прогнозе
Корреляционно-регрессионной моделью системы взаимосвязанных признаков является такое уравнение регрессии, которое включает основные факторы, влияющие на вариацию результативного признака, обладает высоким (не ниже 0,5) коэффициентом детерминации и коэффициентами регрессии, интерпретируемыми, в соответствии с теоретическим знанием о природе связей в изучаемой системе.
Приведенное определение КРМ включает достаточно строгие условия: далеко не всякое уравнение регрессии можно считать моделью. В частности, полученное выше по 16 хозяйствам уравнение не отвечает последнему требованию из-за противоречащего экономике сельского хозяйства знака при факторе х2 - доля пашни. Однако в учебных целях используем его как модель.
Теория и практика выработали ряд рекомендаций для построения корреляционно-регрессионной модели.
1. Признаки-факторы должны находиться в причинной связи с результативным признаком (следствием). Поэтому, недопустимо, например, в модель себестоимости у вводить в качестве одного из факторов хj коэффициент рентабельности, хотя включение такого «фактора» значительно повышает коэффициент детерминации.
2. Признаки-факторы не должны быть составными частями результативного признака или его функциями, о чем уже сказано ранее.
3. Признаки-факторы не должны дублировать друг друга, т. е. быть коллинеарными (с коэффициентом корреляции более 0,8). Так, не следует в модель производительности труда включать и энерговооруженность рабочих, и их фондовооруженность, так как эти факторы тесно связаны друг с другом в большинстве объектов.
4. Не следует включать в модель факторы разных уровней иерархии, т. е. фактор ближайшего порядка и его субфакторы. Например, в моделях себестоимости зерна не следует включать и урожайность зерновых культур, и дозу удобрений под них или затраты на обработку гектара, показатели качества семян, плодородия почвы, т. е. субфакторы самой урожайности.
5. Желательно, чтобы между результативным признаком и факторами соблюдалось единство единицы совокупности, к которой они отнесены. Например, если у - валовой доход предприятия, то и все факторы должны относиться к предприятию: стоимость производственных фондов, уровень специализации, численность работников и т. д. Если же у - средняя зарплата рабочего на предприятии, то факторы должны относиться к рабочему: разряд или классность, стаж работы, возраст, уровень образования, энерговооруженность и т. д. Правило это не категорическое, в модель зарплаты рабочего можно включить, например и уровень специализации предприятия.
6. Математическая форма уравнения регрессии должна соответствовать логике связи факторов с результатом в реальном объекте. Например, такие факторы урожайности, как дозы разных удобрений, уровень плодородия, число прополок и т. п., создают прибавки величины урожайности, мало зависящие друг от друга; урожайность может существовать и без любого из этих факторов. Такому характеру связей отвечает аддитивное уравнение регрессии: .
Наоборот, если у – объем валовой продукции завода, – число работников, – стоимость основных производственных фондов, – затраты на энергию, топливо, сырье и материалы (комплектующие изделия), то результат без любого из факторов не существует, поэтому большинство экономистов-статистиков строят КРМ(называемую производственной функцией, что весьма неудачно терминологически) в мультипликативной форме : (8.46), где коэффициенты , соответствуют коэффициентам эластичности факторов при стремлении прироста фактора к бесконечно малой величине: при . Для конечных приростов факторов коэффициенты уравнения (8.44) не равны коэффициентам эластичности, как иногда утверждается в литературе.
Уравнение (8.46) линеаризуется логарифмированием:
, и далее решается как линейная модель.
7.Принцип
простоты: предпочтительнее модель
с меньшим числом факторов
при том же коэффициенте
Для анализа степени эффективности управления производством можно использовать сравнение единиц совокупности по показателям отклонений результативного признака от средней величины и от значения, рассчитанного по уравнению регрессии . (8.47)
Первое слагаемое в правой части равенства - это отклонение, которое возникает за счет отличия индивидуальных значений факторов у данной единицы совокупности от их средних значений по совокупности. Его можно назвать эффектом факторообеспеченности. Второе слагаемое - отклонение, которое возникает за счет не входящих в модель факторов и отличия индивидуальной эффективности факторов по данной единице совокупности от средней эффективности факторов в совокупности, измеряемой коэффициентами условно-чистой регрессии. Его можно назвать эффектом фактороотдачи.
Рассмотрим пример расчета и анализа отклонений по ранее построенной модели уровня валового дохода в 16 хозяйствах. Знаки тех и других отклонений 8 раз совпадают и 8 раз не совпадают. Коэффициент корреляции рангов отклонений двух видов составил 0,156. Это означает, что связь вариации факторообеспеченности с вариацией фактороотдачи слабая, несущественная (табл. 8.13).
Таблица 8.13
Анализ факторообеспеченности и фактороотдачи по
регрессионной модели уровня валового дохода
Обратим внимание на хозяйство № 15 с высокой факторообеспеченностью (15-е место) и самой худшей фактороотдачей (1-й ранг), из-за которой хозяйство недополучило по 122 руб. дохода с 1 га. Напротив, хозяйство № 5 имеет факторообеспеченность ниже средней, но благодаря более эффективному использованию факторов получило на 125 руб. дохода с 1 га больше, чем было бы получено при средней по совокупности эффективности факторов. Более высокая эффективность фактора х1 (затраты труда) может означать более высокую квалификацию работников, лучшую заинтересованность работников в качестве выполняемой работы. Более высокая эффективность фактора х3 с точки зрения доходности может состоять в высоком качестве молока (жирности, охлажденности), ввиду которого оно реализовано по более высоким ценам. Коэффициент регрессии при х2, как уже отмечено, экономически не обоснован.
Использование регрессионной модели для прогнозирования состоит в подстановке в уравнение регрессии ожидаемых значений факторных признаков для расчета точечного прогноза результативного признака или (и) его доверительного интервала с заданной вероятностью, как уже сказано в 8.2. Сформулированные там же ограничения прогнозирования по уравнению регрессии сохраняют свое значение и для многофакторных моделей. Кроме того, необходимо соблюдать системность между подставляемыми в модель значениями факторных признаков.
Формулы для расчета средних ошибок оценки положения гиперплоскости регрессии в заданной многомерной точке и для индивидуальной величины результативного признака весьма сложны, требуют применения матричной алгебры и здесь не рассматриваются. Средняя ошибка оценки значения результативного признака, рассчитанная по программе ПЭВМ «Microstat» и приведенная в табл. 8.8, равна 79,2 руб. на 1 га. Это лишь среднее квадратическое отклонение фактических значений дохода от расчетных по уравнению, не учитывающее ошибки положения самой гиперплоскости регрессии при экстраполяции значений факторных признаков. Поэтому ограничимся точечными прогнозами в нескольких вариантах (табл. 8.14).
Для сравнения прогнозов с базисным уровнем средних по совокупности значений признаков введена первая строка таблицы. Краткосрочный прогноз рассчитан на малые изменения факторов за короткое время и снижение трудообеспеченности.
Результат неблагоприятен, доход снижается. Долгосрочный прогноз А - «осторожный», он предполагает весьма умеренный прогресс факторов и соответственно небольшое увеличение дохода. Вариант Б - «оптимистический», рассчитан на существенное изменение факторов. Вариант № 5 построен по способу, которым Агафья Тихоновна в комедии Н. В. Гоголя «Женитьба» мысленно конструирует портрет «идеального жениха»: нос взять от одного претендента, подбородок от другого, рост от третьего, характер от четвертого... вот если бы соединить все нравящиеся ей качества в одном человеке, она бы не колеблясь вышла замуж... Так и при прогнозировании мы объединяем лучшие (с точки зрения модели дохода) наблюдаемые значения факторов: берем значение x1 от хозяйства № 10, значение x2 от хозяйства № 2, значение х3 от хозяйства №16. Все значения факторов уже существуют реально в изучаемой совокупности, они не «ожидаемые», не «взятые с потолка», это хорошо. Однако могут ли эти значения факторов сочетаться в одном предприятии, системны ли эти значения? Решение данного спорного вопроса выходит за рамки статистики, оно требует конкретных знаний об объекте прогнозирования.
Таблица 8.14
Прогнозы валового дохода по регрессионной модели
Информация о работе Понятие о статистической и корреляционной связи