Понятие о статистической и корреляционной связи

Автор работы: Пользователь скрыл имя, 07 Декабря 2014 в 18:44, реферат

Описание работы

Использование возможностей современной вычислительной техники, оснащенной пакетами программ машинной обработки статистической информации на ЭВМ, делает практически осуществимым оперативное решение задач изучения взаимосвязи показателей биржевых ставок методами корреляционно-регрессионного анализа.
При машинной обработке исходной информации на ЭВМ, оснащенных пакетами стандартных программ ведения анализов, вычисление параметров применяемых математических функций является быстро выполняемой счетной операцией.

Файлы: 1 файл

курсач.docx

— 404.67 Кб (Скачать файл)

Доверительные границы коэффициента регрессии b1, с вероятностью 0,95, для которой значение критерия Стьюдента равно 2,18, составляют 2,26 ± 2,18·0,658 или от 0,826 до 3,694.

Очень широкие границы объясняются малой численностью единиц совокупности. Из (8.44) следует, что при росте объема совокупности в q раз ошибка коэффициента регрессии, как и ошибка выборочной оценки средней величины, уменьшится в √q̅ раз. При 400 единицах совокупности ошибка была бы меньше в 5 раз.

Если значение критерия t оказывается ниже критического для вероятности нулевой гипотезы 0,05, влияние фактора считается не доказанным надежно, и при работе программ ЭВМ с отсевом несущественных факторов по t-критерию данный фактор автоматически исключается из уравнения регрессии.

Средняя ошибка оценки коэффициента множественной корреляции mR определяется по формуле

.      (8.45)

 

Оценка существенности и расчет доверительных границ генерального коэффициента корреляции осуществляются так же, как и для коэффициента регрессии. Если значение R близко к единице, необходимо использовать преобразование Фишера, рассмотренное ранее в п. 8.2. Существуют также специальные таблицы критических значений коэффициента корреляции для заданного числа степеней свободы и вероятности нулевой гипотезы (см. приложение, табл. 5).

Корреляционно-регрессивные  модели (КРМ) и их применение в анализе и прогнозе

 

Корреляционно-регрессионной моделью системы взаимосвязанных признаков является такое уравнение регрессии, которое включает основные факторы, влияющие на вариацию результативного признака, обладает высоким (не ниже 0,5) коэффициентом детерминации и коэффициентами регрессии, интерпретируемыми, в соответствии с теоретическим знанием о природе связей в изучаемой системе.

Приведенное определение КРМ включает достаточно строгие условия: далеко не всякое уравнение регрессии можно считать моделью. В частности, полученное выше по 16 хозяйствам уравнение не отвечает последнему требованию из-за противоречащего экономике сельского хозяйства знака при факторе х2 - доля пашни. Однако в учебных целях используем его как модель.

Теория и практика выработали ряд рекомендаций для построения корреляционно-регрессионной модели.

1. Признаки-факторы должны находиться в причинной связи с результативным признаком (следствием). Поэтому, недопустимо, например, в модель себестоимости у вводить в качестве одного из факторов хj коэффициент рентабельности, хотя включение такого «фактора» значительно повышает коэффициент детерминации.

2. Признаки-факторы не должны быть составными частями результативного признака или его функциями, о чем уже сказано ранее.

3. Признаки-факторы не должны дублировать друг друга, т. е. быть коллинеарными (с коэффициентом корреляции более 0,8). Так, не следует в модель производительности труда включать и энерговооруженность рабочих, и их фондовооруженность, так как эти факторы тесно связаны друг с другом в большинстве объектов.

4. Не следует включать в модель факторы разных уровней иерархии, т. е. фактор ближайшего порядка и его субфакторы. Например, в моделях себестоимости зерна не следует включать и урожайность зерновых культур, и дозу удобрений под них или затраты на обработку гектара, показатели качества семян, плодородия почвы, т. е. субфакторы самой урожайности.

5. Желательно, чтобы между результативным признаком и факторами соблюдалось единство единицы совокупности, к которой они отнесены. Например, если у - валовой доход предприятия, то и все факторы должны относиться к предприятию: стоимость производственных фондов, уровень специализации, численность работников и т. д. Если же у - средняя зарплата рабочего на предприятии, то факторы должны относиться к рабочему: разряд или классность, стаж работы, возраст, уровень образования, энерговооруженность и т. д. Правило это не категорическое, в модель зарплаты рабочего можно включить, например и уровень специализации предприятия.

6. Математическая форма уравнения регрессии должна соответствовать логике связи факторов с результатом в реальном объекте. Например, такие факторы урожайности, как дозы разных удобрений, уровень плодородия, число прополок и т. п., создают прибавки величины урожайности, мало зависящие друг от друга; урожайность может существовать и без любого из этих факторов. Такому характеру связей отвечает аддитивное уравнение регрессии:  .

Наоборот, если у – объем валовой продукции завода, – число работников, – стоимость основных производственных фондов, – затраты на энергию, топливо, сырье и материалы (комплектующие изделия), то результат без любого из факторов не существует, поэтому большинство экономистов-статистиков строят КРМ(называемую производственной функцией, что весьма неудачно терминологически) в мультипликативной форме :  (8.46), где коэффициенты , соответствуют коэффициентам эластичности факторов при стремлении прироста фактора к бесконечно малой величине: при . Для конечных приростов факторов коэффициенты уравнения (8.44) не равны коэффициентам эластичности, как иногда утверждается в литературе.

Уравнение (8.46) линеаризуется логарифмированием:

  , и далее решается как линейная модель.

7.Принцип  простоты: предпочтительнее модель  с меньшим числом факторов  при том же коэффициенте детерминации  или даже при несущественно  меньшем коэффициенте.

Для анализа степени эффективности управления производством можно использовать сравнение единиц совокупности по показателям отклонений результативного признака от средней величины и от значения, рассчитанного по уравнению регрессии . (8.47)

Первое слагаемое в правой части равенства - это отклонение, которое возникает за счет отличия индивидуальных значений факторов у данной единицы совокупности от их средних значений по совокупности. Его можно назвать эффектом факторообеспеченности. Второе слагаемое - отклонение, которое возникает за счет не входящих в модель факторов и отличия индивидуальной эффективности факторов по данной единице совокупности от средней эффективности факторов в совокупности, измеряемой коэффициентами условно-чистой регрессии. Его можно назвать эффектом фактороотдачи.

Рассмотрим пример расчета и анализа отклонений по ранее построенной модели уровня валового дохода в 16 хозяйствах. Знаки тех и других отклонений 8 раз совпадают и 8 раз не совпадают. Коэффициент корреляции рангов отклонений двух видов составил 0,156. Это означает, что связь вариации факторообеспеченности с вариацией фактороотдачи слабая, несущественная (табл. 8.13).

 

 

Таблица 8.13

Анализ факторообеспеченности и фактороотдачи по

 регрессионной модели уровня валового дохода

 

     

 

Обратим внимание на хозяйство № 15 с высокой факторообеспеченностью (15-е место) и самой худшей фактороотдачей (1-й ранг), из-за которой хозяйство недополучило по 122 руб. дохода с 1 га. Напротив, хозяйство № 5 имеет факторообеспеченность ниже средней, но благодаря более эффективному использованию факторов получило на 125 руб. дохода с 1 га больше, чем было бы получено при средней по совокупности эффективности факторов. Более высокая эффективность фактора х1 (затраты труда) может означать более высокую квалификацию работников, лучшую заинтересованность работников в качестве выполняемой работы. Более высокая эффективность фактора х3 с точки зрения доходности может состоять в высоком качестве молока (жирности, охлажденности), ввиду которого оно реализовано по более высоким ценам. Коэффициент регрессии при х2, как уже отмечено, экономически не обоснован.

Использование регрессионной модели для прогнозирования состоит в подстановке в уравнение регрессии ожидаемых значений факторных признаков для расчета точечного прогноза результативного признака или (и) его доверительного интервала с заданной вероятностью, как уже сказано в 8.2. Сформулированные там же ограничения прогнозирования по уравнению регрессии сохраняют свое значение и для многофакторных моделей. Кроме того, необходимо соблюдать системность между подставляемыми в модель значениями факторных признаков.

Формулы для расчета средних ошибок оценки положения гиперплоскости регрессии в заданной многомерной точке и для индивидуальной величины результативного признака весьма сложны, требуют применения матричной алгебры и здесь не рассматриваются. Средняя ошибка оценки значения результативного признака, рассчитанная по программе ПЭВМ «Microstat» и приведенная в табл. 8.8, равна 79,2 руб. на 1 га. Это лишь среднее квадратическое отклонение фактических значений дохода от расчетных по уравнению, не учитывающее ошибки положения самой гиперплоскости регрессии при экстраполяции значений факторных признаков. Поэтому ограничимся точечными прогнозами в нескольких вариантах (табл. 8.14).

Для сравнения прогнозов с базисным уровнем средних по совокупности значений признаков введена первая строка таблицы. Краткосрочный прогноз рассчитан на малые изменения факторов за короткое время и снижение трудообеспеченности.

Результат неблагоприятен, доход снижается. Долгосрочный прогноз А - «осторожный», он предполагает весьма умеренный прогресс факторов и соответственно небольшое увеличение дохода. Вариант Б - «оптимистический», рассчитан на существенное изменение факторов. Вариант № 5 построен по способу, которым Агафья Тихоновна в комедии Н. В. Гоголя «Женитьба» мысленно конструирует портрет «идеального жениха»: нос взять от одного претендента, подбородок от другого, рост от третьего, характер от четвертого... вот если бы соединить все нравящиеся ей качества в одном человеке, она бы не колеблясь вышла замуж... Так и при прогнозировании мы объединяем лучшие (с точки зрения модели дохода) наблюдаемые значения факторов: берем значение x1 от хозяйства № 10, значение x2 от хозяйства № 2, значение х3 от хозяйства №16. Все значения факторов уже существуют реально в изучаемой совокупности, они не «ожидаемые», не «взятые с потолка», это хорошо. Однако могут ли эти значения факторов сочетаться в одном предприятии, системны ли эти значения? Решение данного спорного вопроса выходит за рамки статистики, оно требует конкретных знаний об объекте прогнозирования.

Таблица 8.14

Прогнозы валового дохода по регрессионной модели

 

 

 


Информация о работе Понятие о статистической и корреляционной связи