Понятие о статистической и корреляционной связи

Автор работы: Пользователь скрыл имя, 07 Декабря 2014 в 18:44, реферат

Описание работы

Использование возможностей современной вычислительной техники, оснащенной пакетами программ машинной обработки статистической информации на ЭВМ, делает практически осуществимым оперативное решение задач изучения взаимосвязи показателей биржевых ставок методами корреляционно-регрессионного анализа.
При машинной обработке исходной информации на ЭВМ, оснащенных пакетами стандартных программ ведения анализов, вычисление параметров применяемых математических функций является быстро выполняемой счетной операцией.

Файлы: 1 файл

курсач.docx

— 404.67 Кб (Скачать файл)

Введение

В банковской, финансовой сфере, при проведении маркетинговых и социологических исследований, при обработке различных экономических данных требуется оценка взаимосвязи показателей и моделирование их зависимости для дальнейшего прогнозирования. Эти задачи призваны решать методы корреляционного и регрессионного анализов.

Основная задача корреляционного анализа состоит в оценке корреляционной матрицы генеральной совокупности по выборке и определяется на основе этой матрицы частных и множественных коэффициентов корреляции и детерминации. Задачей регрессионного анализа является построение модели, позволяющей по значениям независимых показателей получать оценки значений зависимой переменной. Регрессионный анализ является основным средством исследования зависимостей между социально-экономическими переменными.

Использование возможностей современной вычислительной техники, оснащенной пакетами программ машинной обработки статистической информации на ЭВМ, делает практически осуществимым оперативное решение задач изучения взаимосвязи показателей биржевых ставок методами корреляционно-регрессионного анализа.

При машинной обработке исходной информации на ЭВМ, оснащенных пакетами стандартных программ ведения анализов, вычисление параметров применяемых математических функций является быстро выполняемой счетной операцией.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Понятие о статистической и корреляционной связи

 

Современная наука исходит из взаимосвязи всех явлений природы и общества. Объем продукции предприятия связан с численностью работников, мощностью двигателей, стоимостью производственных фондов и еще многими признаками.

Невозможно управлять явлениями, предсказывать их развитие без изучения характера, силы и других особенностей связей. Поэтому методы исследования, измерения связей составляют чрезвычайно важную часть методологии научного исследования, в том числе и статистического.

Различают два типа связей между различными явлениями и их признаками: функциональную или жестко детерминированную, с одной стороны, и статистическую или стохастически детерминированную- с другой. Строго определить различие этих типов связи можно тогда, когда они получают математическую формулировку. Для простоты будем говорить о связи двух явлений или двух признаков, математически отображаемой в форме уравнения связи двух переменных.

Если с изменением значения одной из переменных вторая изменяется строго определенным образом, т.е. значению одной переменной обязательно соответствует одно или несколько точно заданных значений другой переменной, связь между ними является функциональной.

Нередко говорят о строгом соответствии лишь одного значения второй из переменных каждому значению первой из них, но это неверно. Например, связь между у и х является строго функциональной, если , но значению х = 4 соответствует не одно, а два значения: у1 = +2; у2 = - 2. Уравнения более высоких степеней могут иметь несколько корней, связь, разумеется, остается функциональной.

Функциональная связь двух величин возможна лишь при условии, что вторая из них зависит только от первой и ни от чего более. В реальной природе (и тем более в обществе) таких связей нет; они являются лишь абстракциями, полезными и необходимыми при анализе явлений, но упрощающими реальность. Функциональная зависимость данной величины у от многих факторов х1, х2, ..., хn возможна только в том случае, если величина y всегда зависит только от перечисленного набора факторов x1, х2 ..., хk и ни от чего более. Между тем все явления и процессы безграничного реального мира связаны между собой, и нет такого конечного числа переменных k, которые абсолютно полно определяли бы собою зависимую величину y. Следовательно, множественная функциональная зависимость переменных есть тоже абстракция, упрощающая реальность.

Однако такие науки, как механика, электротехника, акустика, политическая экономия и другие, успешно используют представление связей как функциональных не только в аналитических целях, но нередко и в целях прогнозирования. Это возможно потому, что в простых системах интересующая нас переменная величина зависит в основном (скажем, на 99% или даже на 99,99%) от немногих других переменных или только от одной переменной. То есть связь в такой несложной системе является хотя и не абсолютно функциональной, но практически очень близкой к таковой. Например, длина года (период обращения Земли вокруг Солнца) почти функционально зависит только от массы Солнца и расстояния Земли от него. На самом деле она зависит в очень слабой степени и от масс, и расстояния других планет от Земли, но вносимые ими (и тем более в миллионы раз более далекими звездами) искажения функциональной связи для всех практических целей, кроме космонавтики, пренебрежимо малы.

Стохастически детерминированная связь не имеет ограничений и условий, присущих функциональной связи. Если с изменением значения одной из переменных вторая может в определенных пределах принимать любые значения с некоторыми вероятностями, но ее среднее значение или иные статистические (массовые) характеристики изменяются по определенному закону - связь является статистической. Иными словами, при статистической связи разным значениям одной переменной соответствуют разные распределения значений другой переменной.

В настоящее время наука не знает более широкого определения связи. Все связи, которые могут быть измерены и выражены численно, подходят под определение «статистические связи», в том числе и функциональные. Последние представляют собой частный случай статистических связей, когда значениям одной переменной соответствуют «распределения» значений второй, состоящие из одного или нескольких значений и имеющие вероятность, равную ' единице. Конечно, качественное различие действительно вероятностных распределений и отдельных значений, имеющих вероятность единицы (достоверных), настолько велико, что хотя функциональные связи и подходят в широком смысле под определение статистической связи, все же с полным основанием можно говорить о двух типах связей.

Корреляционной связью называют важнейший частный случай статистической связи, состоящий в том, что разным значениям одной переменной соответствуют различные средние значения другой. С изменением значения признака х закономерным образом изменяется среднее значение признака у; в то время как в каждом отдельном случае значение признака у (с различными вероятностями) может принимать множество различных значений.

Если же С изменением значения признака х среднее значение признака у не изменяется закономерным образом, но закономерно изменяется другая статистическая характеристика (показатели вариации, асимметрии, эксцесса и т.п.), то связь является не корреляционной, хотя и статистической.

Статистическая связь между двумя признаками (переменными величинами) предполагает, что каждый из них имеет случайную вариацию индивидуальных значений относительно средней величины. Если же такую вариацию имеет лишь один из признаков, а значения другого являются жестко детерминированными, то говорят лишь о регрессии, но не о статистической (тем более корреляционной) связи. Например, при анализе динамических рядов'можно измерять регрессию уровней ряда урожайности (имеющих случайную колеблемость) на номера лет. Но нельзя говорить о корреляции между ними и применять показатели корреляции с соответствующей им интерпретацией (см. гл. 9).

Само слово корреляция ввел в употребление в статистику английский биолог и статистик Френсис Гальтон в конце XIX в. Тогда оно писалось как «corelation» (соответствие), но не просто «связь» (relation), а «как бы связь», т. е. связь, но не в привычной в то время функциональной форме. В науке вообще, а именно в палеонтологии, термин «корреляция» применил еще раньше, в конце XYI1I в., знаменитый французский палеонтолог (специалист по ископаемым останкам животных и растений прошлых эпох) Жорж Кювье. Он ввел даже «закон корреляции» частей и органов животных. «Закон корреляции» помогает восстановить по найденным в раскопках черепу, костям и т. д. облик всего животного и его место в системе: если череп с рогами, то это было травоядное животное, а его конечности имели копыта; если же лапа с когтями - то хищное животное без рогов, но с крупными клыками.

Известен следующий рассказ о Кювье и «законе корреляции». В дни университетского праздника студенты решили подшутить над профессором Кювье. Они вырядили одного из студентов в козлиную шкуру с рогами и копытами и подсадили его в окно спальни Кювье. Ряженый загремел копытами и завопил: «Я тебя съем!». Кювье проснулся, увидел силуэт с рогами и спокойно отвечал: «Если у тебя рога и копыта, то по закону корреляции ты травоядное, и съесть меня не можешь. А за то, что не знаешь закона корреляции, получишь двойку!».

Корреляционная связь между признаками может возникать разными путями. Важнейший путь - причинная зависимость результативного признака (его вариации) от вариации факторного признака. Например, признак х - балл оценки плодородия почв, признак у -урожайность сельскохозяйственной культуры. Здесь совершенно ясно логически, какой признак выступает как независимая переменная (фактор) х, какой - как зависимая переменная (результат) у.

Совершенно иная интерпретация необходима при изучении корреляционной связи между двумя следствиями общей причины. Известен классический пример, приведенный крупнейшим статистиком России начала XX в. А. А. Чупровым: если в качестве признака х взять число пожарных команд в городе, а за признака - сумму убытков за год в городе от пожаров, то между признаками х и у в совокупности городов России существенна прямая корреляция; в среднем, чем больше пожарников в городе, тем больше и убытков от пожаров! Уж не занимались ли пожарники поджигательством из боязни потерять работу? Но дело в другом. Данную корреляцию нельзя интерпретировать как связь причины и следствия; оба признака - следствия общей причины - размера города. Вполне логично, что в крупных городах больше пожарных частей, но больше и пожаров, и убытков от них за год, чём в мелких городах.

Третий путь возникновения корреляции - взаимосвязь признаков, каждый из которых и причина, и следствие. Такова, например, корреляция между уровнями производительности труда рабочих и уровнем оплаты 1 ч труда (тарифной ставкой). С одной стороны, уровень зарплаты - следствие производительности труда: чем она выше, тем выше и оплата. Но с другой стороны, установленные тарифные ставки и расценки играют стимулирующую роль: при правильной системе оплаты они выступают в качестве фактора, от которого зависит производительность труда. В такой системе признаков допустимы обе постановки задачи; каждый признак может выступать и в роли независимой переменной х, и в качестве зависимой переменной у.

 

Задачи корреляционно-регрессивного анализа и моделирования

В соответствии с сущностью корреляционной связи ее изучение имеет две цели:

1) измерение параметров уравнения, выражающего связь средних значений зависимой переменной со значениями независимой переменной (зависимость средних величин результативного признака от значений одного или нескольких факторных признаков);

2) измерение тесноты связи двух (или большего числа) признаков между собой.

Вторая задача специфична для статистических связей, а первая разработана для функциональных связей и является общей. Основным методом решения задачи нахождения параметров уравнения связи является метод наименьших квадратов (МНК), разработанный К. Ф. Гауссом (1777-1855). Он состоит в минимизации суммы квадратов отклонений фактически измеренных значений зависимой переменной у от ее значений, вычисленных по уравнению связи с факторным признаком (многими признаками) х.

Для измерения тесноты связи применяется несколько показателей. При парной связи теснота связи измеряется прежде всего корреляционным отношением, которое обозначается греческой буквой п. Квадрат корреляционного отношения - это отношение межгрупповой дисперсии результативного признака, которая выражает влияние различий группированного факторного признака на среднюю величину результативного признака, к общей дисперсии результативного признака, выражающей влияние на него всех причин и условий. Квадрат корреляционного отношения называется коэффициентом детерминации:

,     (8.1)

 

где k — число групп по факторному признаку;

N - число единиц совокупности;

yi - индивидуальные значения результативного признака;

у̅j - его средние групповые значения;

у̅ - его общее среднее значение;

fj - частота в j-й группе.

 

Формула (8.1) применяется при расчете показателя тесноты связи по аналитической группировке. При вычислении корреляционного отношения по уравнению связи (уравнению парной или множественной регрессии) применяется формула (8.2):

,     (8.2)

 

где у̂i - индивидуальные значения у по уравнению связи.

 

Сумма квадратов в числителе - это объясненная связью с фактором х (факторами) дисперсия результативного признака у. Она вычисляется по индивидуальным данным, полученным для каждой единицы совокупности на основе уравнения регрессии.

Если уравнение выбрано неверно или сделана ошибка при расчете его параметров, то сумма квадратов в числителе может оказаться большей, чем в знаменателе, и отношение утратит тот смысл, который оно должно иметь, а именно какова доля общей вариации результативного признака, объясняемая на основе выбранного уравнения связи его с факторным признаком (признаками). Чтобы избежать ошибочного результата, лучше вычислять корреляционное отношение по другой формуле (8.3), не столь наглядно выявляющей сущность показателя, но зато полностью гарантирующей от возможного искажения:

 

В числителе формулы (8.3) стоит сумма квадратов отклонений фактических значений признака у от его индивидуальных расчетных значений, т. е. доля вариации этого признака, не объясняемая за счет входящих в уравнение связи признаков-факторов. Эта сумма не может стать равной нулю, если связь не является функциональной. При неверной формуле уравнения связи или ошибке в расчетах возрастают расхождения фактических и расчетных значений, и корреляционное отношение снижается, как логически и должно быть.

В основе перехода от формулы (8.2) к формуле (8.3) лежит известное правило разложения сумм квадратов отклонений при группировке совокупности:

Согласно этому правилу можно вместо межгрупповой (факторной) дисперсии использовать разность:

Информация о работе Понятие о статистической и корреляционной связи