Автор работы: Пользователь скрыл имя, 01 Апреля 2010 в 15:44, Не определен
При статистическом исследовании экономических явлений могут применяться выборочные наблюдения, при которых характеристики генеральной совокупности получаются на основании изучения части генеральной совокупности, называемой выборочной совокупностью или выборкой.
1.
МЕТОД ВЫБОРОЧНЫХ
НАБЛЮДЕНИЙ
1.1.
Выборочное исследование
При
статистическом исследовании
Выборочное наблюдение (выборочное исследование) заключается в обследовании определенного числа единиц совокупности, отобранного, как правило, случайным образом. При выборочном методе обследованию подлежит сравнительно небольшая часть всей изучаемой совокупности (обычно до 5–10%, реже до 15–20%). Отбор единиц из генеральной совокупности производится таким образом, чтобы выборочная совокупность была представительна
(репрезентативна) и характеризовала генеральную совокупность. Степень представительности выборки зависит от способа организации выборки и от ее объема. Полной репрезентативности выборки достичь не удается. Поэтому необходима оценка надежности результатов выборки и возможности их распространения на генеральную совокупность.
В
зависимости от характеристик
выборочных совокупностей
Представительная выборка – выборка наблюдений из генеральной совокупности, наиболее полно и адекватно представляющая ее свойства.
Расслоенная выборка – выборка, включающая ряд выборочных совокупностей, взятых из соответствующих слоев генеральной совокупности. Широко используется при выборочном обследовании в экономике, демографии и социологии.
Засоренная выборка – выборка наблюдений, содержащая “грубые” ошибки. Основная масса элементов засоренной выборки является реализацией случайной величины X , закон распределения которой известен. Такие элементы – “типичные” – появляются в совокупности с вероятностью . С вероятностью элементы совокупности оказываются реализацией другой случайной величины Y , закон распределения которой в общем случае неизвестен. Такие элементы называются “грубыми” ошибками. Обычные оценки, например, средняя арифметическая выборочная, на засоренной выборке теряют свои оптимальные свойства (эффективность, несмещенность) с ростом интенсивности засорения .
Цензурированная выборка – выборка, полученная из вариационного ряда наблюдений путем отбрасывания некоторого числа экстремальных наблюдений. Если отбрасывание производится по признаку выхода наблюдений за пределы заданного интервала, то такой прием называется цензурирование первого типа. В этом случае число оставшихся наблюдений является случайной величиной. Если отбрасывается фиксированная доля крайних малых значений и фиксированная доля крайних больших значений, то это называется цензурированием второго типа уровня При этом, число оставшихся в рассмотрении наблюдений является величиной заранее заданной.
Проведение выборочных исследований статистической информации состоит из следующих этапов:
–
формулировка цели
–
обоснование целесообразности
–
отграничение генеральной
– установление системы отбора единиц для наблюдения;
– определение числа единиц, подлежащих отбору;
– проведение отбора единиц;
– проведение наблюдения;
–
расчет выборочных
–
распространение выборочных
Выборочное исследование осуществляется с минимальными затратами труда и средств и в более короткие сроки, чем сплошное наблюдение, что повышает оперативность статистической информации, уменьшает ошибки регистрации. В проведении ряда исследований выборочный метод является единственно возможным, например, при контроле качества продукции, сопровождающимся разрушением проверяемого изделия.
Выборочный
метод дает достаточно точные
результаты, поэтому он может
применяться для проверки
В основе теории выборочного наблюдения лежат теоремы законов больших чисел, которые позволяют решить два взаимосвязанных вопроса выборки: рассчитать ее объем при заданной точности исследования и определить ошибку при данном объеме выборки.
При
использовании выборочного
Относительная
величина альтернативного
Средняя
величина количественного
1.2.
Виды отбора при
выборочном наблюдении
Процесс
образования выборки
Основным
условием проведения
При индивидуальном отборе в выборку отбираются отдельные единицы совокупности. Отбор повторяется столько раз, сколько необходимо отобрать единиц.
Групповой (серийный) отбор заключается в отборе серий (например, отбор изделий для проверки их целыми партиями). Если обследованию подвергаются все единицы отобранных серий, отбор называется серийным, а если обследуется только часть единиц каждой серии, отбираемых в индивидуальным порядке из серии, то – комбинированным.
Если в процессе отбора отобранная единица не исключается из совокупности, т.е. возвращается в совокупность, и может быть повторно отобранной, то такой отбор называется повторным или возвратным, в противном случае – бесповторным или безвозвратным. Серийный отбор, как правило, безвозвратный.
При повторном отборе
При одноступенчатом отбираются единицы совокупности (или серии) непосредственно для наблюдения. При многоступенчатом отбираются сначала крупные серии единиц (первая ступень отбора), наблюдению они не подвергаются. Затем из них отбираются серии, меньшие по численности единиц (вторая ступень), наблюдению не подвергаются, и так до тех пор, пока не будут отобраны те единицы совокупности (серии), которые будут подвергнуты наблюдению.
Собственно–случайный отбор состоит в отборе единиц (серий) из всей генеральной совокупности в целом посредством жеребьевки или на основании таблиц случайных чисел.
Жеребьевка состоит в том, что на каждую единицу отбора составляется карточка, которой присуждается порядковый номер. После тщательного перемешивания по очереди извлекаются карточки, пока не будет отобрано требуемое число единиц.
Случайными числами называются ряды чисел, являющихся реализациями последовательности взаимно независимых и одинаково распределенных случайных величин. Эти последовательности чисел получаются либо с помощью физических генераторов (подбрасывание кубиков с нанесенными на их сторонами цифрами; вытягиванием из урны карточек с написанными на них цифрами, преобразование случайных сигналов и др. физико–технические процессы), либо с помощью программных генераторов (аналитическим методом с помощью программ для ЭВМ). Числа, являющиеся результатами соответствующей вычислительной процедуры, называются псевдослучайными числами. Последовательность псевдослучайных чисел носит детерминированный характер, но в определенных границах она удовлетворяет свойствам равномерного распределения и свойству случайности.
Случайные числа могут быть
выбраны по таблице случайных
чисел (приложение 1), которая содержит
2000 случайных чисел, объединенных
для удобства пользования
5489, 5583, 3156, 0835, 1988, 3912.
Применение комбинаций этих
548, 955, 833, 156, 083, 519, 883, 912.
При произвольном объеме
0,5489; 0,5583; 0,3156; 0,0835; 0,1988; 0,3912 и т.д.
Если генеральная совокупность состоит из 2000 единиц, то в выборочную совокупность должны войти единицы с номерами:
2000 × 0,5489 = 1097,8 или 1099;
2000 × 0,5583 = 1116,6 или 1117;
2000 × 0,3156 = 631,2 или 631;
2000 × 0,0835 = 167,0 или 167;
2000 × 0,1988 = 397,6 или 398;
2000 × 0,3912 = 782,4 или 782.
Процесс формирования
Можно предложить другой
5489, 5583, 3156, 0835, 1988, 3912.
В выборку могут войти только единицы, порядковые номера которых равны трехзначным числам меньше 780. Поэтому, используя только три последние цифры каждого числа, отбирается необходимые 75 номеров: 489, 583, 156 и т.д. Можно использовать и первые три цифры каждого числа, тогда отобранные номера: 548, 558, 315, 83, 198, 391. Можно разбить случайные четырехзначные случайные числа на ряд, состоящий из трехзначных чисел:
548, 955, 833, 156, 083, 519, 883, 912
и отобрать из них номера, которые меньше 780, а именно: 548, 156, 83, 519.
Механический отбор заключается в том, что составляется список единиц генеральной совокупности и в зависимости от числа отбираемых единиц (серий) устанавливается шаг отбора, т.е. через какой интервал следует брать для наблюдения единицы (серии). Например, в простейшем случае, при 10%–м отборе, отбирается каждая десятая единица по этому списку, т.е. если первой взята единица за № 1, то следующими отбираются 11–я, 21–я и т.д. В такой последовательности производится отбор, если единицы совокупности расположены в списке без учета их “рангов”, т.е. значимости по изучаемым признакам. Начало отбора в этом случае не имеет значения, его можно начать в приведенном примере от любой единицы из первого десятка. При расположении единиц совокупности в ранжированном порядке за начало отбора должна быть принята середина интервала (шага отбора) во избежание систематической ошибки выборки.