Автор работы: Пользователь скрыл имя, 04 Ноября 2009 в 16:42, Не определен
Реферат
БЕЛОРУССКИЙ
ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ
Кафедра
радиотехнических устройств
РЕФЕРАТ
На тему:
«Функции
алгебры логики. Логический
базис»
МИНСК, 2008
1.
Функции алгебры
логики (ФАЛ)
Радиоэлектроника в настоящее время во многом определяет научно- технический прогресс и объединяет ряд отдельных областей науки и техники, развившихся из радиотехники и электроники.
Радиотехника - область науки и техники, связанная с разработкой устройств и систем, обеспечивающих генерирование, усиление, преобразование, хранение, а также излучение и прием электромагнитных колебаний радиочастотного диапазона, используемых для передачи информации.
В современных радиотехнических системах и комплексах до 90% разрабатываемых устройств реализуется на элементах цифровой и вычислительной техники и используются цифровые методы обработки сигналов.
В
настоящее время бурно
Уже отошла в историю дискретная схемотехника, когда различные узлы строились на печатных платах с использованием отдельных навесных радиоэлектронных компонентов: транзисторов, резисторов, конденсаторов и других элементов. Ранее соединения выполнялись с помощью внешнего печатного монтажа, теперь соединения и монтаж осуществляется внутри кристалла. Поэтому современный инженер электронной техники должен владеть передовыми методами и технологиями, чтобы уметь приспособить их завтра к вычислительной технике будущих поколений, овладеть практическими приемами проектирования устройств на программируемых логических интегральных схемах.
Логические выражения n двоичных переменных с помощью конечного числа логических операций можно рассматривать как некоторую функцию, отражающую взаимную связь между входными и выходными переменными. Логические операции конъюнкции и дизъюнкции можно представить простейшими функциями вида: и . Эти функции называются аналогично логическим операциям – функциями И и ИЛИ.
Такие ФАЛ подобно логическим выражениям могут быть заданы аналитическим и табличным способами.
При
аналитическом способе ФАЛ
При табличном способе ФАЛ задается таблицей истинности, где число всех возможных наборов (комбинаций) аргументов конечно. Если число аргументов ФАЛ равно n, то число их возможных наборов , а число различных функций , тогда при n=2, F=16. Составим таблицу истинности для функций двух аргументов.
Таблица 1.
Аргументы | Функции | ||||||||||||||||
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 |
1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 |
1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
В таблице 1 приведены элементарные ФАЛ двух аргументов. В левой части таблицы перечислены все возможные наборы аргументов и , в правой части приведены значения ФАЛ на соответствующих входных наборах. Значения всей совокупности этих наборов переменных представлены в таблице последовательностью чисел в двоичной системе счисления.
Каждая ФАЛ обозначает одну из 16 возможных логических операций над двумя переменными и , имеет свою таблицу истинности, собственное название и условное обозначение.
Основные
сведения об элементарных функциях
даны в таблице 2. Таблицы истинности
для каждой ФАЛ составляются отдельно
по таблице 1.
Таблица 2
Операционные символы | Обозначения, названия | Зарубежные аналоги | |
0 | Константа 0 | Const 0 | |
|
| ||
|
| ||
|
| ||
|
| ||
|
| ||
|
| ||
|
| ||
|
Peers F. | ||
|
|
| |
|
| ||
|
| ||
|
| ||
|
| ||
|
| ||
1 |
Генератор 1 |
Generator 1 |
В таблице 2 часто применяемыми являются функции:
-повторители 1-го и 2-го
– инверсии 1-го и 2-го аргументов;
– функция И (конъюнкция), логическое умножение;
– функция И-НЕ (базис Шеффера);
– функция ИЛИ (дизъюнкция), логическое сложение;
– функция ИЛИ-НЕ (базис Пирса);
– функция неравнозначности, реализуется ЛЭ “Исключающее ИЛИ” (сумматор по модулю два);
– функция равнозначности
реализуется ЛЭ “Исключающее ИЛИ-НЕ”.
Рассмотренные элементарные функции двух аргументов играют важную роль при преобразованиях сложных логических выражений, а также при преобразовании функциональных цифровых узлов.
Функции n переменных, значения которых заданы во всех точках области определения, считаются полностью определенными ФАЛ. Если какая-либо функция имеет запрещенные наборы переменных и ее значения на указанных наборах не определены, то такая ФАЛ называется не полностью определенной. Такие наборы будем отмечать в таблицах истинности (*) и при необходимости доопределять их значениями 0 и 1. Эти вопросы будут рассматриваться позже.
Логические функции, которые считаются полностью определенными, могут быть представлены различными формами.
ДНФ – дизъюнктивная нормальная форма записи ФАЛ представляется в виде суммы (дизъюнкции) ряда элементарных членов (минтермов), каждый из которых является произведением (конъюнкцией) аргументов или их инверсий. Термин “нормальная форма” предполагает, что в логическом выражении, задающем функцию, последовательно выполняются не более двух базовых операций (кроме инверсии).
Запишем ФАЛ в ДНФ:
; (1)
Функцию (3.19) можно записать в виде дизъюнкции минтермов:
где - конъюнкции аргументов ФАЛ, называемые минтермами.
СДНФ – совершенная дизъюнктивная нормальная форма записи ФАЛ представляется в ДНФ, где в каждом элементарном члене (минтерме), имеющем одинаковую размерность, представлены все аргументы функции или их инверсии.
Запишем ФАЛ в СДНФ:
. (2)
Если записать ФАЛ в виде:
,
то
форма представления данной
Функцию можно упростить (минимизировать) и представить минимальной ДНФ (МДНФ).
(4)
Полученные элементарные члены МДНФ называются импликантами.
КНФ – конъюнктивная нормальная форма записи ФАЛ, представляется в виде произведения (конъюнкции) ряда элементарных членов (макстермов), которые являются суммой (дизъюнкцией) аргументов ФАЛ.
Запишем функцию в КНФ:
. (5)
СКНФ – совершенная конъюнктивная нормальная форма записи ФАЛ представляется в КНФ, где в каждом элементарном члене (макстерме) представлены все аргументы функции либо их инверсии.
Запишем функцию в СКНФ:
. (6)
По функциям, представленным в СДНФ и СКНФ, можно построить таблицу истинности и наоборот – по таблице истинности можно записать ФАЛ в СДНФ и СКНФ.
На
основании общей табл. 1 составим
таблицу истинности функции неравнозначности
и запишем ее в СДНФ и СКНФ.
На наборах N(2,3), где функция принимает значения 1, записываем ФАЛ в СДНФ, а на наборах N(1,4) – в СКНФ. При записи ФАЛ в СДНФ аргументы x=0 записываются с инверсией , а в СКНФ – без инверсии.
При записи функции в СДНФ по таблице истинности необходимо записать столько дизъюнктивных членов (минтермов), представляющих собой конъюнкции всех аргументов, сколько единиц содержит функция в таблице. Минтермы соединяются знаком логического суммирования.
Если в наборе значение аргумента равно нулю, то в конъюнкцию входит инверсия данного аргумента.
Информация о работе Функции алгебры логики. Логический базис