Расчёт и проетирование светодиода

Автор работы: Пользователь скрыл имя, 18 Марта 2011 в 16:14, курсовая работа

Описание работы

Полупроводниковые светоизлучающие диоды (СИД) или светодиоды - это класс твердотельных приборов, в которых электрическая энергия непосредственно преобразуется в световую. В основе их действия лежит инжекционная электролюминесценция, эффективная в соединениях типа АIIIВV. Так же светодиоды решают задачу преобразования электрических сигналов в оптические, служат эффективными по КПД источниками света.

Файлы: 1 файл

РАСЧЕТ И ПРОЕКТИРОВАНИЕ СВЕТОДИОДА.doc

— 469.50 Кб (Скачать файл)

     Семиэлемептные  индикаторы или матрицы из 3х5 точек обычно применяются для воспроизведения цифр от 0 до 9, хотя с их помощью можно воспроизводить некоторые прописные (A, В, С, D, E,F, G, H, I, J, L, О, S, U) и строчные (b, с, d, h, i,l, n, о, r, и) буквы. Для цифровых индикаторов наиболее широко используется формат с семью полосками, а для буквенно-цифровых индикаторов удобнее всего матрицы из 5х7 точек.  

     

     Рисунок 1.4 - Форматы буквенно-цифровых индикаторов на основе светодиодов 

     Размер  индикатора зависит от расстояния до наблюдателя. Высота символов обычно выбирается из расчета угла наблюдения 10-24', причем угол наблюдения (в минутах) определяется выражением: 

     Угол  наблюдения = 120 arctg (h/2d),   (1.12) 

     где h-высота символа, a d–расстояние от глаза до индикатора.

     Для электролюминесцентных индикаторов наилучшее зрительное восприятие обычно достигается уменьшением размера символов до минимума и соответственным увеличением яркости. Наиболее распространенными областями применения малогабаритных индикаторов являются ручные приборы и карманные калькуляторы. Типичная высота символов (мнимое изображение индикатора) составляет 2,5-3,5 мм, что соответствует углу наблюдения 9,5-13,4' для расстояния, равного длине вытянутой руки (~90 см). Действительный размер интегральных полупроводниковых индикаторов составляет 1,125-2,5 мм, что соответствует линейному увеличению в 1,4-2,2 раза. Следующее наиболее употребительное значение для высоты символов равно 8-12 мм; такие индикаторы применяются на приборных панелях или на пультах управления. При расстоянии 3 м это соответствует углу наблюдения 9,2-13,8'. Типичное отношение ширины символа к его высоте для индикаторов обоих типов составляет 0,6-0,8.

     Цифровые  индикаторы различаются в основном формой полосок (прямые или скругленные), видом освещения полосок (равномерное или точечное) и углом наклона цифр (90 или ~80°). При сравнении различных цифровых индикаторов размером 7-15 мм был сделан вывод, что прямые линии распознаются значительно лучше, чем скругленные, что четкость точечного изображения выше, чем изображения, образованного штрихами, и что прямые и наклонные цифры воспринимаются одинаково. Было замечено также, что четкость контура является очень важным параметром, от которого зависит разборчивость цифр. Цифры, образованные относительно широкими штрихами, имели размытые контуры, и поэтому при их чтении возникало много ошибок. Рекомендуемое отношение ширины к высоте для белых штрихов на черном фоне составляет 1 : 10; вместе с тем при ярком освещении или для ярких индикаторов (например, малогабаритных цифровых светодиодных матриц) это отношение можно уменьшить до 1 : 20.

     С целью снижения ошибок в распознавании  также интенсивно исследовались  буквенно-цифровые индикаторы в виде матриц с 5х7 элементами. Оказалось, что  некоторые ошибки встречаются намного  чаще других, и это нужно учитывать при разработках новых индикаторов. Наиболее часто неправильно воспринимаются Q (читают как 0), 5 (читают как S), V (читают как Y), Z (читают как 2) и I (читают как Г). В другой работе была проведена оценка числа ошибок для 3-миллиметровой матрицы из 5х7 красных светодиодов из GaAsP при угле наблюдения 14'. Подробные исследования с привлечением 371 наблюдателя в возрасте от 9 до 78 лет позволили сделать ценные выводы относительно конструирования индикаторов на основе светодиодов. Эти исследования показали, что число ошибок не постоянно для разных символов: одни дают намного больше, а другие намного меньше ошибок, чем в среднем.

     Выяснилось, что при использовании начертаний, отличных от использованных в упомянутой работе, наибольшее количество ошибок падает на Q (читают как О), А (читают как Н) и S (читают как 5). Эти ошибки необратимые, т. е. О не читают как Q и т. д. Было показано, что суммарное число ошибок для всех символов монотонно возрастало при увеличении освещенности фона. Это означает, что распознавание любых символов затрудняется при снижении яркостного контраста. Число ошибок при максимальной освещенности (8000 лк) составляло ~20% для наблюдателей в возрасте до 35 лет, а затем резко начинало расти, достигая 60% для наблюдателей в возрасте 50 лет. Частично это вызвано увеличением расстояния наилучшего зрения с возрастом от 35 до 55 лет примерно в 5 раз (с ~0,2 до ~1,0 м): для близоруких число ошибок было меньше среднего. Эта возрастающая трудность фокусировки глазом излучения наиболее заметна для красной части спектра, в которой проводился эксперимент. В красной части спектра возрастает роль хроматической аберрации и дифракции - двух явлений, определяющих размытие изображения на сетчатке глаза. Отсюда можно сделать вывод, что для индикаторов лучше подходит желтый или зеленый цвет, и можно ожидать, что высококачественные малогабаритные индикаторы со временем будут изготавливаться именно таких цветов (вместо более дешевых красных индикаторов, используемых в настоящее время).

     Технология изготовления маленьких (~3 мм) и больших (~9 мм) полосковых индикаторов различна, что диктуется экономическими соображениями. Для малогабаритных индикаторов более пригодны монолитные конструкции, поскольку при уменьшении размеров резко возрастает стоимость монтажа отдельных элементов. В больших же семиполосковых индикаторах ограничивающим фактором является стоимость материала; поэтому в таких индикаторах свет семи маленьких светодиодов распределяется по необходимой поверхности с помощью дешевых пластмассовых рефлекторов. Например, в 9-миллиметровом индикаторе площадь, занимаемая полупроводником, составляет ~5% площади всей освещаемой поверхности. Рефлекторы можно сконструировать так, чтобы полоски освещались равномерно или чтобы в отдельных частях полосок яркость была выше (при этом цифра будет казаться состоящей из светящихся точек). Изображение в маленьких или больших матрицах с 5х7 элементами аналогичным образом формируется с помощью 35 отдельных светодиодов. Необходимый контраст изображения в большинстве индикаторов достигается с помощью цветных светофильтров. В условиях сильного освещения также важно уменьшать отражение внешнего света от передней поверхности светофильтра, т.е. снижать его блеск. Зеркальное отражение можно уменьшить, делая поверхность светофильтра матовой. При нормальном падении коэффициент зеркального отражения от матовой поверхности Rs равен: 

     Rs=R0ехр[(4·p·s)2/l2],     (1.13)

     где R0 - коэффициент отражения от гладкой поверхности, а s – среднеквадратичное отклонение матовой поверхности от среднего уровня гладкой поверхности.

     1.2 Полупроводниковые материалы, используемые в производстве светоизлучающих диодов

 

     Таблица 1.1 - Основные материалы для светодиодов

    Полупроводник 4050

    710, А

    Цвет Эффективность

    %

    Быстродействие,

    Нс

    GaAs 9500

    9000

    ИК 12; 50 5* 0

    2

    10 5-7 0...10 5-6 0

    10 5-9 0...10 5-8 0

    GaP 6900

    5500

    Красный

    Зелёный

    7

    0,7

    10 5-7 0...10 5-6 0

    10 5-7 0...10 5-6 0

    GaN 5200

    4400

    Зелёный

    Голубой

    0,01

    0,005

     
    GaAs 41-x 0P 4x 0 6600

    6100

    Красный

    Янтарный

    0,5

    0,04

    3 77 010 5-8 0

    3 77 010 5-8 0

    Ga 41-x 0Al 4x 0As 8000

    6750

    ИК

    Красный

    12

    1,3

    10 5-8 0

    3 77 010 5-8 0

    In 41-x 0Ga 4x 0P 6590

    5700

    Красный

    Желто-зеленый

    0,2

    0,1

     

     1.2.1  Арсенид галлия

     Полупроводниковые светоизлучающие диоды изготавливают  в настоящее время на основе бинарных и нтерметаллических соединений типа AIIIBV и многокомпонентных твердых растворов этих соединений. В данной главе будут кратко рассмотрены основные электрофизические свойства наиболее широко применяемых в производстве ветоизлучающих диодов полупроводниковых соединений –GaAs и GaP.

     Большое внимание к GaAs в начальный период исследования соединений типа АIIIВV было связано с представлением о том, что На основе GaAs возможно создание высокочастотных и высокотемпературных транзисторов, так как подвижность электронов в нем значительно выше, а их эффективная масса почти на порядок меньшие, чем в Ge. Однако эти ожидания не оправдались, так как время жизни носителей в GaAs оказалось весьма малым.

     Первые  важные области применения GaAs были связаны с использованием его для производства туннельных диодов. Значительную и все возрастающую роль GaAs играет в производстве фотопреобразователей солнечной энергии в электрическую.

     Наиболее  массовое применение GaAs нашел в производстве диодных источников спонтанного и когерентного излучений. На основе GaAs созданы высокоэффективные излучающие диоды инфракрасного диапазона, находящие разнообразные применения в оптоэлектронике. Широкое применение в производстве светоизлучающих диодов, знаковых индикаторов, лазеров и ИК диодов находят твердые растворы GaAs с GaP и AlAs.

     Основной  промышленный метод получения GaAs - метод Чохральского. Значительное распространение находит также горизонтальная направленная кристаллизация по методу Бриджмена. Монокристаллы GaAs по параметрам распределяются на несколько марок. Монокристаллы n-типа легируются Те, Sn или ничем не легируются, монокристаллы р-типа легируются Zn [1].

     Содержание  посторонних примесей в GaAs n- и р-типов не превышает (% по массе): 1·10-5% Cu; 6·10-5% Со; 1·10-4% Fe; 5·10-6% Mn; 5·10-5% Cr; 2·10-5% Ni.

     1.2.2  Фосфид галлия

     GaP, так же как и GaAs, кристаллизуется в структуре цинковой обманки с ребром элементарной кубической ячейки 5,4506 А. Кратчайшее расстояние между центрами ядер элементов решетки GaP равно 2,36 А, что составляет сумму атомных радиусов Р (1,1 А) и Ga (1,26 А).

     Промышленное  получение монокристаллического GaP осуществляется в две стадии: синтез-получение крупных поликристаллических слитков и выращивание монокристаллов по методу Чохральского из расплава, находящегося под слоем флюса. Монокристаллы GaP по параметрам делятся на несколько марок. Монокристаллы n-типа легируются Те или S или ничем не легируются, монокристаллы р-типа легируются Zn, монокристаллы высокоомного GaP легируются хромом или другими примесями с глубокой энергией залегания. Следует отметить, что в связи с условиями выращивания (высокая температура, высокое противодавление Р, наличие флюса, отсутствие стойких контейнерных материалов) монокристаллы GaP характеризуются высоким уровнем неконтролируемых фоновых примесей (примерно 5·1016-1·1017 см-3), а также высокой плотностью дислокации (более 104 см-2). Поэтому монокристаллы GaP не обладают пригодной для практики люминесценцией и для получения светоизлучающих р-n-переходов необходимо выращивать эпитаксиальные слои GaP.

 

     

  1. РАСЧЕТ  И ПРОЕКТИРОВАНИЕ СВЕТОДИОДА

     2.1 Основные параметры светодиода

 

     Uгас.  – напряжение гасящее;

     Uпит.  – напряжение питания; 

     Uсв. – напряжение светодиода;

     Iсв. – ток светодиода ;

     Rсв. – нагрузочный резистор светодиода;

     Есв. – эффективность светодиода;

     F – световой поток;

     Р – мощность;

     Ω – телесный угол;

     α – угол наблюдения;

     I – сила света.

     2.2 Расчет светодиода

     Исходные  данные: 

     Ток светодиода – 20 mA;

     напряжение  сети – 9 В;

     напряжение  светодиода – 3,6 В;

     угол  наблюдения – 15°;

     сила  света – 6,4 кд

     2.2.1 Расчет эффективности светодиода

     Эффективность E светодиодов (далее СИД) определяется отношением светового потока F, производимого  СИД к «закачанной» в него мощности P. Это общая эффективность, включающая в себя энергетическую эффективность самого СИД, зависящую от физики работы, материала и конструкции СИД и световую эффективность зрения для спектра излучения данного СИД. Общая эффективность измеряется в люменах (лм) на ватт (Вт): 

     E=F/P, лм/Вт (2.1) 

     Но, так как производители указывают, как правило, в качестве основного светотехнического параметра СИД силу света I, измеряемую в канделах, то нужно пересчитать канделы в люмены. Сила света определяет пространственную плотность (интенсивность) светового потока (luminous intensity): 

     I=F/Ω,  лм/ср (2.2) 

     где Ω – телесный угол, измеряемый в  стерадианах (ср).

     2.2.2 Расчет телесного угла

     Для того чтобы ознакомиться с понятием телесного угла, придется совершить  краткий экскурс в стереометрию. Площадь поверхности шара радиусом R составляет 4πR2. Если выделить на поверхности шара область площадью R2, то мы получим конус с пространственным углом как раз в один стерадиан. Запомним, что полная площадь поверхности шара составляет 4π стерадиан. Полезно знать, что телесный угол Ω связан с плоским углом α соотношением:  

Информация о работе Расчёт и проетирование светодиода