Автор работы: Пользователь скрыл имя, 31 Января 2011 в 05:40, курсовая работа
Увеличение объема и структурной сложности хранимых данных, расширение круга пользователей информационных систем привели к широкому распространению наиболее удобных и сравнительно простых для понимания реляционных (табличных) СУБД. Для обеспечения одновременного доступа к данным множества пользователей, нередко расположенных достаточно далеко друг от друга и от места хранения баз данных, созданы сетевые мультипользовательские версии БД основанных на реляционной структуре. В них тем или иным путем решаются специфические проблемы параллельных процессов, целостности (правильности) и безопасности данных, а также санкционирования доступа.
Введение…………………………………………………………………………...4
1. Общая часть работы……………………………………………………………5
1.1. Информационная система и ее разновидности…………………………….5
1.2. Модели жизненного цикла информационной системы……………………6
1.2.1. Каскадная модель…………………………………………………………..6
1.2.2. Спиральная модель…………………………………………………………7
3.Обеспечивающие подсистемы (виды обеспечения) ИС…...……………..12
1.3.1. Автоматизированная система...…………………………………………..13
1.3.2. Техническое обеспечение ………………………………………………..14
1.3.3. Математическое и программное обеспечение ………………………….15
1.3.4. Организационное обеспечение…………………………………………...15
1.3.5. Правовое обеспечение…………………………………………………….16
4.Типирование интеллекта……………………………………………………17
1.4.1. Задача типирования интеллекта………………………………………….17
1.4.2.Постановка задачи ………………………………………………………..18
1.4.3.Решение задачи типирования интеллекта ………………………………18
1.4.4.Результаты типирования …………………………………………………20
2.Специальная часть…...………..………………………………………………25
2.1.1.Проектирование баз и хранилищ данных ...…….……………………….25
•Введение. История развития баз данных………………………………...25
3.Файлы и файловые системы……………………………………………..27
2.1.4. Первый этап — базы данных на больших ЭВМ………………………..30
2.1.5. Второй этап - эпоха персональных компьютеров………………………32
2.1.6. Третий этап - распределенные базы данных…………………………….33
2.1.7. Четвертый этап - перспективы развития систем
управления базами данных……………………………………………………...35
2.2 Основные понятия и определения………………………………………….36
2.2.1. Языковые средства банка данных………………………………………..37
2.2.2. Пользователи банков данных…………………………………………….39
2.2.3. Архитектура базы данных
Физическая и логическая независимость……………………………..………..43
2.2.4. Классификация банков данных…………………………………………..45
2.3. Проектирование баз данных………………………………………………..48
2.3.1. Этапы проектирования баз данных……………………………………...48
2.3.2. Внешний уровень — подготовительный этап
инфологического проектирования……………………………………………...51
2.3.3. Требования и подходы к инфологическому проектированию…………54
Заключение ………………………………………………………………………56
Список используемой литературы……………………………………………...57
Вторая
область использования
Говорить о надежном и долговременном хранении информации можно только при наличии запоминающих устройств, сохраняющих информацию после выключения электрического питания. Оперативная (основная) память компьютеров этим свойством обычно не обладает. В первых компьютерах использовались два вида устройств внешней памяти — магнитные ленты и барабаны. Емкость магнитных лент была достаточно велика, но по своей физической природе они обеспечивали последовательный доступ к данным. Магнитные же барабаны (они ближе всего к современным магнитным дискам с фиксированными головками) давали возможность произвольного доступа к данным, но имели ограниченный объем хранимой информации.
Эти ограничения не являлись слишком существенными для чисто численных расчетов, Даже если программа должна обработать (или произвести) большой объем информации, при программировании можно продумать расположение этой информации во внешней памяти (например, на последовательной магнитной ленте), обеспечивающее эффективное выполнение этой программы. Однако в информационных системах совокупность взаимосвязанных информационных объектов фактически отражает модель объектов реального мира. А потребность пользователей в информации, адекватно отражающей состояние реальных объектов, требует сравнительно быстрой реакции системы на их запросы. И в этом случае наличие сравнительно медленных устройств хранения данных, к которым относятся магнитные ленты и барабаны, было недостаточным.
Можно предположить, что именно требования нечисловых приложений вызвали появление съемных магнитных дисков с подвижными головками, что явилось революцией в истории вычислительной техники. Эти устройства внешней памяти обладали существенно большей емкостью, чем магнитные барабаны, обеспечивали удовлетворительную скорость доступа к данным в режиме произвольной выборки, а возможность смены дискового пакета на устройстве позволяла иметь практически неограниченный архив данных.
С появлением
магнитных дисков началась история
систем управления данными во внешней
памяти. До этого каждая прикладная
программа, которой требовалось хранить
данные во внешней памяти, сама определяла
расположение каждой порции данных на
магнитной ленте или барабане и выполняла
обмены между оперативной памятью и устройствами
внешней памяти с помощью программно-аппаратных
средств низкого уровня (машинных команд
или вызовов соответствующих программ
операционной системы). Такой режим работы
не позволяет или очень затрудняет поддержание
на одном внешнем носителе нескольких
архивов долговременно хранимой информации.
Кроме того, каждой прикладной программе
приходилось решать проблемы именования
частей данных и структуризации данных
во внешней памяти.
Важным шагом в развитии именно информационных систем явился переход к использованию централизованных систем управления файлами. С точки зрения прикладной программы, файл — это именованная область внешней памяти, и которую можно записывать и из которой можно считывать данные. Правила именования файлов, способ доступа к данным, хранящимся в файле, и структура этих данных зависят от конкретной системы управления файлами и, возможно, от типа файла. Система управления файлами берет на себя распределение внешней памяти, отображение имен файлов в соответствующие адреса во внешней памяти и обеспечение доступа к данным.
Такие системы иногда называются файловыми. Несмотря на относительную простоту организации, файловые системы имеют ряд недостатков:
Пользователи
видят файл как линейную последовательность
записей и могут выполнить
над ним ряд стандартных
В разных файловых системах эти операции могли несколько отличаться, но общий смысл их был именно таким. Главное, что следует отметить, это то, что структура записи файла была известна только программе, которая с ним работала, система управления файлами не знала ее. И поэтому для того, чтобы извлечь некоторую информацию из файла, необходимо было точно знать структуру записи файла с точностью до бита. Каждая программа, работающая с файлом, должна была иметь у себя внутри структуру данных, соответствующую структуре этого файла. Поэтому при изменении структуры файла требовалось изменять структуру программы, а это требовало новой компиляции, то есть процесса перевода программы в исполняемые машинные коды. Такая ситуации характеризовалась как зависимость программ от данных. Для информационных систем характерным является наличие большого числа различных пользователей (программ), каждый из которых имеет свои специфические алгоритмы обработки информации, хранящейся в одних и тех же файлах. Изменение структуры файла, которое было необходимо для одной программы, требовало исправления и перекомпиляции и дополнительной отладки всех остальных программ, работающих с этим же файлом. Это было первым существенным недостатком файловых систем, который явился толчком к созданию новых систем хранения и управления информацией.
Для иллюстрации обратимся к примеру, приведенному в книге: У.Девис,
Операционные системы, М., Мир, 1980:
«Несколько лет назад почтовое ведомство (из лучших побуждений) пришло к решению, что все адреса должны обязательно включать почтовый индекс. Во многих вычислительных центрах это, казалось бы, незначительное изменение привело к ужасным последствиям. Добавление к адресу нового поля, содержащего шесть символов, означало необходимость внесения изменений в каждую программу, использующую данные этой задачи в соответствии с изменившейся суммарной длиной полей. Тот факт, что какой-то программе для выполнения ее функций не требуется знания почтового индекса, во внимание не принимался: если в некоторой программе содержалось обращение к новой, более длинной записи, то в такую программу вносились изменения, обеспечивающие дополнительное место в памяти.
В
условиях автоматизированного управления
централизованной базой данных все
такие изменения связаны с
функциями управляющей
Программы, не использующие значения почтового индекса, не нуждаются в модификации - в них, как и прежде, в соответствии с запросами посылаются те же элементы данных. В таких случаях внесенное изменение неощутимо.
Модифицировать необходимо только те программы, которые пользуются новым элементом данных».
Далее, поскольку файловые системы являются общим хранилищем файлов, принадлежащих, вообще говоря, разным пользователям, системы управления файлами должны обеспечивать авторизацию доступа к файлам. В общем виде подход состоит в том, что по отношению к каждому зарегистрированному пользователю данной вычислительной системы для каждого существующего файла указываются действия, которые разрешены или запрещены данному пользователю.
В большинстве современных систем управления файлами применяется подход к защите файлов, впервые реализованный в ОС UNIX. В этой ОС каждому зарегистрированному пользователю соответствует пара целочисленных идентификаторов: идентификатор группы, к которой относится этот пользователь, и его собственный идентификатор в группе. При каждом файле хранится полный идентификатор пользователя, который создал этот файл, и фиксируется, какие действия с файлом может производить его создатель, какие действия с файлом доступны для других пользователей той же группы и что могут делать с файлом пользователи других групп. Администрирование режимом доступа к файлу в основном выполняется его создателем-владельцем, Для множества файлов, отражающих информационную модель одной предметной области, такой децентрализованный принцип управления доступом вызывал дополнительные трудности. И отсутствие централизованных методов управления доступом к информации послужило еще одной причиной разработки СУБД.
Следующей
причиной стала необходимость
В системах управления файлами обычно применялся следующий подход. В операции открытия файла (первой и обязательной операции, с которой должен начинаться сеанс работы с файлом) среди прочих параметров указывался режим работы (чтение или изменение). Если к моменту выполнения этой операции некоторым пользовательским процессом PR1 файл был уже открыт другим процессом PR2 в режиме изменения, то и зависимости от особенностей системы процессу PR1 либо сообщались и невозможности открытия файла, либо он блокировался до тех пор, пока в процессе PR2 не выполнялась операция закрытия файла.
При
подобном способе организации
Эти недостатки послужили тем толчком, который заставил разработчиков информационных систем предложить новый подход к управлению информацией.
Этот
подход был реализован в рамках новых
программных систем, названных впоследствии
Системами Управления Базами Данных (СУБД),
а сами хранилища информации, которые
работали под управлением данных систем,
назывались базами или банками данных
(БД и БнД).
2.1.4. Первый этап — базы данных на больших ЭВМ
История развития СУБД насчитывает более 30 лет. В 1968 году была введена в эксплуатацию первая промышленная СУБД система IMS фирмы IBM. В 1975 году появился первый стандарт ассоциации по языкам систем обработки данных — Conference of Data System Languages (CODASYL), который определил ряд фундаментальных понятий в теории систем баз данных, которые и до сих пор являются основополагающими для сетевой модели данных.
В дальнейшее развитие теории баз данных большой вклад был сделан американским математиком Э. Ф. Коддом, который является создателем реляционной модели данных. В 1981 году Э. Ф. Кодд получил за создание реляционной модели и реляционной алгебры престижную премию Тьюринга
Американской ассоциации по вычислительной технике.
Менее двух десятков лет прошло с этого момента, но стремительное развитие вычислительной техники, изменение ее принципиальной роли в жизни общества, обрушившийся бум персональных ЭВМ и, наконец, появление мощных рабочих станций и сетей ЭВМ повлияло также и на развитие технологии баз данных. Можно выделить четыре этапа в развитии данного направления в обработке данных. Однако необходимо заметить, что все же нет жестких временных ограничений в этих этапах: они плавно переходят один в другой и даже сосуществуют параллельно, но, тем не менее, выделение этих этапов позволит более четко охарактеризовать отдельные стадии развития технологии баз данных, подчеркнуть особенности, специфичные для конкретного этапа.