Конвертер 2,5 млн.тонн. Установка непрерывной разливки стали сляба 1200/100мм

Автор работы: Пользователь скрыл имя, 11 Декабря 2009 в 17:35, Не определен

Описание работы

Пояснительная записка

Файлы: 1 файл

слава тех.линия.doc

— 1.12 Мб (Скачать файл)

    Механизм  поворота может быть односторонним  и двусторонним. У конверторов  емкостью 130 т и менее делают односторонний  механизм поворота, в котором одна из цапф соединена с приводом. Наклон большегрузных конверторов требует применения значительного по величине крутящего момента, вызывающего большие напряжения в металлоконструкциях опорного кольца и привода. Поэтому для более равномерного их распределения механизм поворота большегрузных конверторов делают двусторонним (см. рис. 6). В состав этого механизма входят два синхронно работающих привода, каждый из которых соединен с соответствующей цапфой.

      
 
 
 
 
 
 
 
 
 
 
 
 

    Рисунок 3 - Футеровка кислородного конвертора:

    1 — кожух конвертора; 2 — арматурный  слой из магнезитового кирпича;  3 — смолодоломитовая набивка; 4 — рабочий слой из смолодоломита

      
 
 
 
 

    Рисунок 4 - Опорное кольцо конвертора;

    1—  полукольцо коробчатого сечения; 2 — цапфовая плита; 3 — цапфа; 4 — крепление полукольца к цапфовой плите 

    Механизмы поворота изготовляют стационарными  и навеными. В комплект стационарного механизма обычно входят два электродвигателя с редукторами, установленные на жестком фундаменте. Вращающий момент выходного вала редуктора передается цапфе через зубчатую муфту либо при помощи шпиндельного соединения. При жестком креплении редукторов на фундаменте перекосы цапф и ударные динамические нагрузки вызывают усиленный износ привода.

    В последние годы применяют более совершенные навеса (закрепленные на цапфе) многодвигательные механизмы поворота. 300-т конвертор с двусторонним многодвигательным механизмом показан на рис. 6. На цапфе жестко закреплено ведомое зубчат колесо 7, вращение которого обеспечивают несколько (от четыре до восьми) электродвигателей с редукторами 6, навешенных на корпус 5 ведомого колеса. Корпус опирается на цапфу через подшипники и при вращении ведомого колеса с цапфой остается неподвижным; от проворачивания его удерживает демпфер 9. Навесные электромоторы 6 удерживаются от проворачивания демферами 8.

    Навесной  многодвигательный привод обладает следующими преимуществами: перекос  цапф не влияет на его работоспособное  при выходе из строя одного двигателя  привод остается работоспособным; демпферы частично компенсируют динамические грузки при включениях и торможениях, что снижает износ шестерен привода; в 2—3 раза уменьшается масса привода; существенно уменьшается площадь, необходимая для его установки. 

    1.5 Шихтовые материалы

    Количество  стального лома доходит до 30% от массы  чугуна. К лому, как и в случае других сталеплавильных процессов, предъявляют требование о недопустимости высокого содержания вредных примесей и ржавчины. Основным шлакообразующим  материалом служит известь, для разжижения шлаков используют боксит и плавиковый шпат, В качестве охладителя и для ускорения шлакообразования применяют железную руду, а иногда вместо нее агломерат, рудно-известковые окатыши или брикеты, прокатную окалину. В отдельных случаях в качестве охладителя применяют известняк.

    Известь должна быть свежеобожженной и содержать  более 91% СаО, менеее 3% SiO и не более 0,05 — 0,1 % серы. При содержаний серы в извести более 0,1 % возможен переход ее из шлака в металл во время плавки. Размеры кусков извести должны быть в пределах 10 — 50 мм. Увеличение содержания SiO в руде вызывает снижение основности шлака и требует увеличения расхода извести, что нежелательно.

    Боксит  и плавиковый шпат применяют для  разжижения шлака. Используемый при конверторной плавке боксит (боксит Б-6 по ГОСТу) содержит 37—50 % Аl2O3, 10—20 % SiO и 12—25% Fe2Oз. В боксите содержится много влаги (10—20%), поэтому перед использованием его нужно просушить, так как большое количество влаги может вызвать повышение содержания водо-рода в стали и выбросы при загрузке боксита в конвертор. 

    1.6 Технология плавки

    Плавку  начинают с загрузки в конвертор  лома. Загрузку ведут через горловину  завалочными машинами или кранами, которые опрокидывают лотки с ломом в наклоненный конвертор. Затем из заливочного ковша с помощью мостового крана через горловину наклоненного конвертора заливают жидкий чугун (рис. 11, б).

    После заливки чугуна конвертор поворачивают в вертикально рабочее положение. В полость конвертора вводят фурму, включая подачу кислорода (рис. 11, б).

    Одновременно  с началом продувки загружают (рис. 11, г) первую порцию шлакообразующих (извести с бокситом или извести с плавиковым шпатом) и иногда железной руды. Первая порция шлакообразующих должна составлять около 2/3 их общего количества. Оставшееся количество шлакообразующих вводят по ходу продувки в течение первой трети ее длительности. Сыпучие материалы загружают с помощью автоматизированной системы, состоящей из бункеров для хранения сыпучих, питателей весов и лотков, по которым материалы ссыпаются в горловину конвертора. Система обеспечивает загрузку сыпучих без остановки продувки по программе, задаваемой оператором из пульта управления конвертором.

    

Рисунок 5 - Технологические операции кислородно-конверторной плавки 

    Кислородную фурму устанавливают в строго определенном положении. Расстояние от головки фурмы до уровня спокойной  ванны в зависимости от емкости  конвертора и принятой в данном цехе технологии составляет 0,7 —3,0 м. Часто продувку ведут при неизменном положении фурмы, а иногда для ускорения шлакообразования в течение первых 3 — 4 мин продувки фурму устанавливают в более высоком положении, чем в течение всей последующей продувки.

    Вследствие  высокого давления подаваемого кислорода (0,9 — 1,4 МПа или 9 — 14 ат) кислородные струи внедряются в металл, вызывая его циркуляцию в конверторе и перемешивание со шлаком. С момента начала продувки в кислородном конверторе интенсивно окисляются примеси чугуна и образуется шлак. Подаваемый кислород обеспечивает окисление содержащихся в чугуне углерода, кремния, марганца, фосфора, а также части железа.

    Характерной особенностью плавки в кислородном  конверторе является образование под  кислородной фурмой высокотемпературной  реакционной зоны с температурой 2400°С и более. Появление столь высоких температур объясняется тем, что в месте контакта кислородной струи с жидким металлом происходит интенсивное окисление составляющих чугуна и большое количество выделяющегося при этом тепла вызывает сильный нагрев сравнительно небольшого объема реакционной зоны.

    Момент  окончания продувки определяют по количеству израсходованного кислорода, длительности продувки, показаниям ЭВМ, виду пламени и искр, вырывающихся из горловины конвертора.

    Все операции по исправлению, за исключением последней, вызывают удлинение цикла плавки, снижение производительности конвертора и поэтому они нежелательны.

    После выполнения необходимых операций по исправлению плавки конвертор наклоняют  и выпускают сталь в ковш через сталевыпускное отверстие, одновременно раскисляя её. Выпускное отверстие обычно открывают во время ожидания Результатов анализа пробы металла. В сталеразливочный ковш сливают также небольшое количество шлака. Шлаковый слой толщиной 200—300 мм предохраняет металл в ковше от быстрого охлаждения. Оставшийся шлак сливают через горловину в подаваемую под конвертор шлаковую чашу.

    Общая длительность плавки в конверторах  емкостью от 30 до 350 т составляет 30—55 мин.

    1.7 Машины непрерывного литья заготовок

    Способ  непрерывного литья заготовок является одним из наиболее важных достижений металлургии XX века и за сравнительно короткий период времени получил самое широкое распространение в мировом сталеплавильном производстве. Он коренным образом изменил не только процесс разливки стали, но и все металлургическое производство. Сейчас примерно 40 % мировой выплавки стали разливается на машинах непрерывного литья заготовок (МНЛЗ).

    Принцип непрерывной разливки заключается в том, что жидкую сталь из ковша заливают в интенсивно охлаждаемую сквозную форму прямоугольного или квадратного сечения — кристаллизатор, где происходит частичное затвердевание непрерывно вытягиваемого слитка, дальнейшее его затвердевание происходит при прохождении зоны вторичного охлаждения. Процесс непрерывного литья позволяет получать заготовки (после резки) для прокатных станов, а также его можно совместить с непрерывной прокаткой в одном агрегате.

    Основные  преимущества непрерывного литья стали  по сравнению с разливкой в изложницы заключаются в следующем. Отпадает необходимость в большом парке изложниц и сталеразливочных тележек, в применении стрипперных кранов и стационарных машин для извлечения слитков из изложниц, установок для охлаждения и подготовки составов с изложницами под разливку, в установке центровых и поддонов, а также блюмингов и слябингов, а в" ряде случаев и заготовочных станов. Снижаются эксплуатационные расходы и затраты электроэнергии, повышается выход годного металла вследствие минимальных потерь металла в скрап; ликвидации литников, резкого уменьшения расхода металла на обрезь в прокатных цехах и т. д. Значительно повышается качество металла вследствие уменьшения поверхностных пороков и улучшения структура слитка. Процесс непрерывного литья поддается полной автоматизации.

    Машины  непрерывного литья заготовок делятся  на пять основных типов: вертикальные, вертикальные с изгибом слитка, радиальные, криволинейные и горизонтальные.

    Начало  промышленного применения непрерывного литья положили машины вертикального типа, у которых кристаллизатор, роликовая проводка, тянущее и режущее устройства расположены по вертикали на высоту 23—35 м, а в ряде случаев и до 43 м. Машины вертикального типа позволяют получать слитки высокого качества, однако их широкому использованию препятствуют присущие им крупные недостатки — большая высота и низкая скорость литья- С целью уменьшения высоты здания и возможности подачи сталеразливочных ковшей к рабочей площадке вертикальные МНЛЗ выполняют с расположением концевой части машины в железобетонном колодце. Помимо удорожания строительства, это приводит к необходимости применения сложных систем выдачи заготовок из колодца. Повышение скорости литья путем увеличения длины зоны кристаллизации слитка на вертикальных машинах не может быть реализовано, так как с увеличением высоты возникает большое ферростатическое давление, приводящее к выпучиванию корки слитка и ее разрушению с прорывом наружу жидкой фазы.

    Создание  машин с изгибом слитка роликами на выходе из тянущего устройства и  переводом его в горизонтальную плоскость не дало ощутимого уменьшения высоты машины, но усложнило ее конструкцию.

    В настоящее время МНЛЗ вертикального  типа с изгибом слитка не устанавливают. Исключение составляют вертикальные машины для литья пустотелых трубных  заготовок и слитков специальных профилей, которые будут применяться в силу специфических условии кристаллизации металла в этих случаях.

    Машины  горизонтального типа из-за недостаточной  отработки узлов и технологического процесса не получили широкого распространения, однако неоспоримые преимущества - минимальная высота машины и отсутствие деформаций слитка при литье — делают их перспективными.

    Наиболее  широкое применение получили радиальные машины, отличающиеся от машин вертикального  типа и с изгибом слитка меньшей высотой (рис.6) и повышенной скоростью литья.

    

Рисунок 6 – Схемы сопоставления высот МНЛЗ заготовок различного типа:

а - вертикального; б - с изгибом слитка; в - радиального 

    Повышения скорости литья в радиальных машинах достигают увеличением протяженности зоны кристаллизации путем увеличения радиуса технологической оси, причем увеличение радиуса и высоты машины на единицу длины дает в l,5 раза большее приращение длины  радиального участка.

    МНЛЗ  криволинейного типа отличаются от радиальных машин наличием переходного криволинейного участка между радиальным и прямолинейными участками технологической линии. 

    2. Специальная часть

    Производительность  конвертора. Работу конвертора характеризуют  годовой, а так же часовой производительностью. Годовую производительность в слитках (т/год) можно подсчитать по следующей формуле:

    Емкость конвертера проектируемого цеха: 

    

 

    где  Пг – годовая производительность цеха, т/год;

        τ – длительность плавки, мин.;

        1440 – число минут в сутках;

        k – коэффициент выхода годного;

        m – число рабочих суток в году, 365·0,8 = 292 сут/год. 

Информация о работе Конвертер 2,5 млн.тонн. Установка непрерывной разливки стали сляба 1200/100мм