Автор работы: Пользователь скрыл имя, 21 Января 2015 в 10:12, контрольная работа
Проблема коррозии является одной из важнейших в промышленности, транспорте и сельском хозяйстве, так как суммарные потери составляют в странах с развитой экономиках 2-4 % совокупного национального продукта и сопоставимы с затратами в крупных отраслях хозяйства. В настоящее время созданы национальные центры и институты по коррозии, действует сеть лабораторий, испытательных станций, противокоррозионных служб и сервисных центров.
Введение 3
Химическая коррозия. Жаростойкость. Жаропрочность 5
Жаростойкость. Теории легирования для повышения
жаростойкости. 7
2.1 Теория уменьшения дефектности образующегося оксида. 8
2.2 Теория образования защитного оксида легирующего элемента. 9
2.3 Теория образования высокозащитных двойных оксидов. 11
3. Легирование сталей на жаростойкость. 13
Заключение 16
Список использованных источников
2.3 Теория образования высокозащитных двойных оксидов. 11
Проблема коррозии является одной из важнейших в промышленности, транспорте и сельском хозяйстве, так как суммарные потери составляют в странах с развитой экономиках 2-4 % совокупного национального продукта и сопоставимы с затратами в крупных отраслях хозяйства. В настоящее время созданы национальные центры и институты по коррозии, действует сеть лабораторий, испытательных станций, противокоррозионных служб и сервисных центров. Успехи науки о химическом сопротивлении металлических материалов обеспечиваются совместными усилиями ученых коррозионистов, материаловедов, металлургов, химиков. Защита металлов от коррозии стала важнейшим элементом современной технологии, а учение о химсопрамате материалов - существенной составляющей материаловедения и физической химии. Наука о коррозии и противокоррозионной защите занимает важное место среди разделов физикохимии, использующих электрохимический подход. В процессе коррозии поверхность металла является катализатором окислительно-востановительных превращений компонентов жидкой и газовой фаз, как это имеет место гетерогенном катализе, но сама служит участником реакций. Поэтому большую роль играют степень гетерогенности металлической поверхности, её фазовый состав, поликристалличность и взаимное влияние структурных составляющих материала. Ситуация осложняется изменением во времени электродного потенциала и поверхностных слоёв коррозирующего металла и среды. Поэтому научной основой коррозиологии является электрохимия растворяющихся металлических поверхностей. Исходя из этого, коррозия трактуется как переход компонентов металлического материала из его собственной системы связей в состояние связи с компонентами среды. Химическое или электрохимическое взаимодействие металла и среды изменяет его свойства и нарушает его функции. Коррозия характеризуется скоростью воображаемого непрерывного движения точки фронта коррозии, то есть границы раздела между металлом и средой, в том числе продуктами коррозии. Техническая скорость коррозии как характеристика коррозионной стойкости - это наибольший показатель коррозии, вероятностью превышения которого нельзя пренебречь. Существуют следующие показатели коррозии: массовый (г/м2 с), линейный 9мм/год), объёмный (м/с), токовый (А/м2 ), а также время до появления первого очага коррозии, доля поверхности, занятая продуктами коррозии, количество точек или язв на единице поверхности и др.
Коррозия классифицируется по характеру поражения металла: сплошная или общая (равномерная, неравномерная, избирательная, например, обесцинкование сплавов) и местная (пятнами, язвами, точечная или питтинг, сквозная, нитевидная, поверхностная, мелкокристаллитная, ножевая и д. р); по условиям протекания: газовая, в жидких металлах, в неэлектролитах (кислотная, щелочная, в нейтральных средах), атмосферная, почвенная, биокоррозия, электрокоррозия, под напряжением и при другом воздействии внешних факторов; по условиям контакта с агрессивной средой: при полном, неполном и периодическом погружении, струйная, щелевая.
Следует рассматривать следующие аспекты коррозии: экономический (прямые и косвенные потери от коррозии и расходы на противокоррозионную защиту), экологический(изменение среды влияет на коррозионную стойкость, а коррозия может приводить к ухудшению экологической обстановки), технологический (создание новых технологий и получениесверхчистых материалов), биомедицинский ( создание протезов), культурный (сохранение исторических памятников), стратегический(дефицит металлов).
Химическая коррозия – это взаимодействие металла с коррозионной средой, при которой окисление металла и восстановление окислительного компонента коррозионной среды протекает в одном акте. Ее первопричиной является термодинамическая неустойчивость металлов в разных агрессивных средах.
Наиболее распространенным и практически важным видом химической коррозии металлов является газовая коррозия. Она протекает при многочисленных высокотемпературных технологических процессах получения и обработки металлов (выплавке и разливке металла, нагреве перед прокаткой, ковке, штамповке, термообработке и т.д.), работе оборудования в условиях влияния высоких температур (арматура нагревательных печей, детали двигателей внутреннего сгорания и т.д.).
Поведение металлов и сплавов в этих условиях оценивается двумя характеристиками: жаростойкостью и жаропрочностью.
Жаростойкость – это способность металла оказывать сопротивление коррозионному влиянию газов при высоких температурах.
Жаропрочность – способность металла сохранять при высоких температурах необходимые механические свойства: длительную прочность и сопротивление ползучести.
При коррозии в кислородсодержащих газах поверхность металла покрывается пленкой оксидов других соединений, от защитных свойств которой в значительной мере зависит жаростойкость металлов и сплавов.
Заметными защитными свойствами могут обладать лишь сплошные пленки. Возможность их образования определяется условием:
(1)
где Vок – молекулярный объем оксида или другого соединения; VМе – атомный объем металла, из которого образуется оксид или другое соединение.
Жаростойкость металлов и сплавов можно в значительной мере повысить легированием – введением в их состав компонентов, которые улучшают защитные свойства образующихся пленок. В результате этого на поверхности сплава образуется слой оксидов легирующего компонента или высокозащитных двойных оксидов легирующего компонента с основным металлом типа шпинели (FeCr2O4, NiFe2O4 и др.).
В установившемся режиме скорость химической коррозии определяется кинетическими возможностями протекания отдельных стадий процесса: кристаллохимическим превращением (кинетический контроль процесса); диффузией реагентов в образовавшейся пленке продуктов коррозии (диффузионный контроль процесса); обеими этими стадиями одновременно при соизмеримом сопротивлении их протеканию (диффузионно-кинетический контроль процесса).
При кинетическом контроле процесса (образование несплошных пористых пленок) жаростойкость определяется природой металла, а при диффузном контроле (образование сплошных оксидных пленок) - защитными свойствами пленки, которая образуется на металле.
Примером удачного сочетания обоих свойств являются сплавы никеля с хромом.
2. Жаростойкость. Теории легирования для повышения жаростойкости
Применительно к условиям газовой коррозии одним из эффективных способов защиты металлов является легирование с целью получения сплавов жаростойких сплавов. В зависимости от предполагаемого действия легирующей добавки можно указать на три наиболее обоснованные теории такого легирования, которые не противоречат, а скорее дополняют друг друга.
2.1 Теория уменьшения дефектности образующегося оксида.
Согласно теории, разработанной Вагнером и Хауфе, небольшая добавка легирующего элемента окисляется с образованием ионов определенной валентности и, растворяясь в оксиде основного металла, уменьшает в его кристаллической решетке концентрацию дефектов (межузельных катионов в оксидах с избытком металла или катионных вакансий в оксидах с недостатком металла). Это приводит к упорядочению структуры и снижению скорости диффузии ионов в защитной пленке, уменьшая тем самым скорость окисления.
В соответствии с этой теорией к легирующему элементу Лэ предъявляются следующие требования:
1) иметь большее сродство к кислороду, чем у основного метал-
ла, т.е. ( Gт)ЛэО < (Gт)МеО;
2)оксид легирующего элемента ЛэО должен растворяться в оксиде основного металла;
3)при легировании металлов, образующих оксиды с избытком
металла, валентность ионов легирующего элемента zЛэ должна удовлетворять неравенствуzЛэ >z, гдеz – валентность ионов основного металла;
4)при легировании металлов, образующих оксиды с недостатком
металла, необходимо соблюдение неравенства zЛэ <z, а приzЛэ =zжелательно соблюдение неравенства радиусов ионов, т.е.rи.Лэ<rи.
Данная теория позволяет предсказать влияние низкого легирования различными элементами на жаростойкость основного металла.
Если скорость окисления металла определяется не диффузией ионов, а другими процессами, или при легировании в оксидной пленке образуется новая фаза, то изложенные выше принципы жаростойкого легирования неприменимы.
2.2 Теория образования защитного оксида легирующего элемента.
Согласно теории, разработанной А.А. Смирновым, И.Д. Томашовым и др., на поверхности металла (сплава) образуется защитный оксид легирующего элемента, затрудняющий диффузию реагентов и окисление основного металла. Для этого легирующий элемент должен удовлетворять следующим требованиям:
1) его оксид удовлетворяет условию сплошности: Voк/V Лэ ≥ 1;
2) он имеет большее сродство к кислороду, чем основной ме-
талл: ( Gт)ЛэО < (Gт)МеО;
3) размер ионов легирующего элемента должен быть меньше
размера иона основного металла, т.е. rи.Лэ <rи. Это облегчает диффузию легирующего элемента к поверхности сплава, на которой образуется защитный оксид;
4) образуется оксид с высоким электросопротивлением, затрудняющим движение в нем ионов и электронов;
5) оксиды легирующих элементов имеют высокие температуры плавления и возгонки и не образуют низкоплавких эвтектик. Этообеспечивает при высоких температурах сохранение оксида в твердой фазе. Переход оксида в жидкое состояние облегчает протекание диффузионных процессов, а частичная возгонка оксида увеличивает пористость пленки, что снижает ее защитные свойства;
6)легирующий элемент и основной металл образуют твердый раствор, что обеспечивает образование сплошной пленки оксида легирующего элемента по всей поверхности сплава.
Рассмотренная теория легирования для повышения жаростойкости находится в хорошем соответствии с целым рядом практических данных по окислению сплавов и позволяет на основании некоторых свойств элементов и их оксидов качественно оценить пригодность различных элементов для среднего и высокого легирования металлов с целью повышения жаростойкости.
Информация о работе Жаростойкость. Теории легирования для повышения жаростойкости