Технология и оборудования термической обработки в машиностроение

Автор работы: Пользователь скрыл имя, 13 Октября 2010 в 10:06, Не определен

Описание работы

Целью работы является рассмотрение оборудования и технологии термической обработки

Файлы: 1 файл

ргр тм.doc

— 413.50 Кб (Скачать файл)

3.    Неравновесное  состояние, являющееся результатом  предыдущей термической обработки. Основная особенность такого состояния — присутствие в сплаве более или менее пересышеного легирующими компонентами твердого раствора на основе алюминия.

4. Неравновесное  состояние, вызванное остаточными напряжениями в объеме металла.

При отжиге, основными параметрами которого являются температура и скорость нагрева, а также продолжительность выдержки при заданной температуре, все рассмотренные выше отклонения от равновесного состояния могут быть устранены. При этом пластичность сплавов всегда возрастает.

Для алюминиевых  сплавов применяют следующие  виды отжига: гомогенизационный отжиг, рекристаллизационный отжиг деформированных  полуфабрикатов, отжиг термически упрочненных  сплавов для разупрочнения и  отжиг для снятия остаточных напряжений [1].

Закалка. Сущность процесса состоит в нагреве сплавов до температур, достаточных для растворения низкотемпературных фаз, выдержке при этих температурах и охлаждении со скоростями, обеспечивающими отсутствие процессов распада.

Температуру нагрева  под закалку выбирают в зависимости от природы сплава. Так как растворение неравновесных фазовых процессов - диффузионный, то температура закалки должна быть возможности высокой. Она не может превышать темпера неравновесного солидуса  сплавов  из-за  возникновения пережога, резко снижающего механические свойства. Продолжительность выдержки при температуре нагрева под закалку определяется скоростью растворения легирующих элементов, входящих в избыточные фазы, и зависит от природы сплава, его структурного состояния и условий нагрева. Скорости охлаждения при закалке должны обеспечивать фиксацию в твердом растворе концентраций легирующих компонентов, свойственных высоким температурам. При выборе охлаждающей среды необходимо принимать во внимание и толщину изделий [1].

Старение. Старение применяют для повышения прочностных характеристик алюминиевых сплавов. Для этого можно использовать естественное и искусственное старение.

Изменения структуры  и свойств определяются разными  механизмами распада в зависимости  от температуры и времени старения. При низких температурах или коротких временах выдержки упрочнение связано с образованием зон Гинье —Престона (ГП) (рис.6) [1].

Рис.6  Схема зоны Гинье—Престона (по Герольду): белые кружки — атомы алюминия;   черные — атомы меди

 Этот вид  старения, являющийся основным для сплавов типа дуралюмина, называют зонным старением. С увеличением температуры старения или времени выдержки может проявиться другой механизм упрочнения, когда оно достигается вследствие выделения из твердого раствора метастабильных фаз, которые имеют с матрицей когерентные или полукогерентные границы. Такое старение, протекающее обычно при повышенных температурах, называют фазовым старением:

Дальнейшее увеличение времени старения приводит к тому, что образуются выделения стабильных фаз, имеющие с матрицей некогерентные границы. Коагуляция этих фаз разупрочняет сплавы, и соответствующий вид старения называют коагуляционным старением.

Возврат при  старении. Этот вид термической обработки  применяют к закаленным и естественно  состаренным алюминиевым сплавам. Сущность этого вида термообработки сводится к следующему. Если естественно состаренный сплав алюминия нагреть на очень короткий промежуток времени до температур, превышающих линию сольвуса для зон Гинье — Престона, то зоны растворяются, а процессы фазового старения еще не успевают протекать. При последующем быстром охлаждении структура и свойства сплава соответствуют свежезакаленному состоянию [1].

3.2 Титан и его сплавы

Титан серебристо-белый легкий металл с плотностью 4,5 г/см³. Температура плавления титана зависит от степени чистоты и находится в пределах 1660…1680°С.

Чистый  иодидный титан, в котором сумма  примесей составляют 0,05…0,1 %, имеет  модуль упругости 112 000 МПа, предел прочности  около 300 МПа, относительное удлинение 65%. Наличие примесей сильно влияет на свойства. Для технического титана ВТ1, с суммарным содержанием примесей 0,8 %, предел прочности составляет 650 МПа, а относительное удлинение – 20 %.

При температуре 882°С титан претерпевает полиморфное превращение, титан с гексагональной решеткой переходит в – титан с объемно-центрированной кубической решеткой. Наличие полиморфизма у титана создает предпосылки для улучшения свойств титановых сплавов с помощью термической обработки.

Титан имеет низкую теплопроводность. При нормальной температуре обладает высокой коррозионной стойкостью в атмосфере, в воде, в органических и неорганических кислотах (не стоек в плавиковой, крепких серной и азотной кислотах), благодаря тому, что на воздухе быстро покрывается защитной пленкой плотных оксидов. При нагреве выше 500°С становится очень активным элементом. Он либо растворяет почти все соприкасающиеся и ним вещества, либо образует с ними химические соединения.

Титановые сплавы имеют ряд преимуществ  по сравнению с другими:

-сочетание высокой прочности( МПа) с хорошей пластичностью ;

- малая плотность, обеспечивающая высокую удельную прочность;

- хорошая жаропрочность, до 600…700°С;

- высокая коррозионная стойкость в агрессивных средах.

Однородные  титановые сплавы, не подверженные старению, используют в криогенных установках до гелиевых температур [1].

3.3 Магний и его сплавы

Магний  – очень легкий металл, его плотность – 1,74 г/см³. Температура плавления – 650°С. Магний имеет гексагональную плотноупакованную кристаллическую решетку. Очень активен химически, вплоть до самовозгорания на воздухе. Механические свойства технически чистого магния (Мг1): предел прочности – 190 МПа, относительное удлинение – 18 %, модуль упругости – 4500 МПа. Основными магниевыми сплавами являются сплавы магния с алюминием, цинком, марганцем, цирконием. Сплавы делятся на деформируемые и литейные. Сплавы упрочняются после закалки и искусственного старения. Закалку проводят от температуры 380…420°С, старение при температуре 260…300°С в течение 10…24 часов. Особенностью является длительная выдержка под закалку – 4…24 часа [5].

3.4 Медь и ее сплавы

Медь  имеет гранецентрированную кубическую решетку. Плотность меди 8,94 г/см³, температура плавления 1083°С. Характерным свойством меди является ее высокая электропроводность, поэтому она находит широкое применение в электротехнике. Технически чистая медь маркируется: М00 (99,99 % Cu), М0 (99,95 % Cu), М2, М3 и М4 (99 % Cu). Механические свойства меди относительно низкие: предел прочности составляет 150…200 МПа, относительное удлинение – 15…25 %. Поэтому в качестве конструкционного материала медь применяется редко. Повышение механических свойств достигается созданием различных сплавов на основе меди. Различают две группы медных сплавов: латуни – сплавы меди с цинком, бронзы – сплавы меди с другими (кроме цинка) элементами [5].

4. Оборудование для термической обработки

К основному  оборудованию для термической обработки относятся печи, нагревательные установки и охлаждающие устройства.  По источнику теплоты печи подразделяют на электрические и топливные (газовые и редко — мазутные).

Для того чтобы  избежать окисления и обезуглероживания стальных деталей при нагреве, рабочее пространство современных термических печей заполняют специальными защитными газовыми средами или нагревательную камеру вакуумируют. Для повышения производительности при термической обработке мелких деталей машин и приборов применяют скоростной нагрев, т. е. загружают их в окончательно нагретую печь. Возникающие при нагреве временные тепловые напряжения не вызывают образования трещин и короблений. Однако скоростной нагрев опасен для крупных деталей (прокатных валков, валов и корпусных деталей), поэтому нагрев таких деталей производят медленно (вместе с печью) или ступенчато. Иногда быстрый нагрев производят в печах-ваннах с расплавленной солью (сверла, метчики и другие мелкие инструменты). На машиностроительных заводах для термической обработки применяют механизированные печи (рис. 7) и автоматизированные агрегаты [4].

Рис. 7. Механизированная электропечь:

1 — нагревательная  камера; 2 — закалочная камера; 3 —  подъемный столик; 4 — вентилятор; 5 — нагреватели; 6 — цепной механизм для передвижения поддона с деталями 

Механизированная  электропечь предназначена для закалки штампов или мелких деталей, укладываемых на поддон. Нагревательную и закалочную камеру можно заполнять защитной атмосферой, предохраняющей закаливаемые детали от окисления и обезуглероживания. С помощью цепного механизма 6 поддон с деталями по направляющим роликам перемещают в нагревательную камеру 1. После нагревания и выдержки тем же цепным механизмом поддон перемещают в закалочную камеру 2 и вместе со столиком 3 погружают в закалочную жидкость (масло или воду). После охлаждения столик поднимается пневмомеханизмом, и поддон выгружается из печи. Детали нагреваются в результате излучения электронагревателей 5 и конвективного теплообмена. Вентиляторы 4, установленные в нагревательной камере и в закалочном баке, предназначены для интенсификации теплообмена и равномерного нагрева и охлаждения деталей.

В механизированных и автоматизированных агрегатах проводят весь цикл термической обработки деталей, например, закалку и отпуск. Такие агрегаты состоят из механизированных нагревательных печей и закалочных баков, моечных машин и транспортных устройств конвейерного типа. Поверхностный нагрев деталей производят тогда, когда в результате поверхностной закалки требуется получить высокую твердость наружных слоев при сохранении мягкой сердцевины. Чаще всего закаливают наружный   слой   трущихся   деталей   машин. Наиболее совершенным способом поверхностной закалки является закалка в специальных установках с нагревом токами высокой частоты ТВЧ. Этот способ нагрева очень производителен, может быть полностью автоматизирован и позволяет получать при крупносерийном производстве стабильное высокое качество закаливаемых изделий при минимальном их короблении и окислении поверхности. Известно, что с увеличением частоты тока возрастает скин-эффект; плотность тока в наружных слоях проводника оказывается во много раз большей, чем в сердцевине. В результате почти вся тепловая энергия

выделяется в  поверхностном слое и вызывает его  разогрев. Нагрев деталей ТВЧ осуществляется индуктором. Если деталь имеет небольшую длину (высоту), то вся ее поверхность может быть одновременно нагрета до температуры закалки. Если же деталь длинная (рис. 8), нагрев происходит последовательно путем перемещения изделия относительно индуктора с рассчитанной скоростью [4].

Рис. 8. Расположение индуктора, закаливаемой цилиндрической детали и спрейера при закалке с нагревом ТВЧ:

I — деталь; 2 — индуктор; 3 — спрейер

Охлаждение при  закалке с нагревом ТВЧ обычно осуществляется водой, подающейся через  спрейер трубку с отверстиями  для разбрызгивания воды, изогнутую  в кольцо и расположенную относительно детали аналогично индуктору. Нагретый в индукторе участок детали или все изделие, перемещаясь, попадает в спрейер, где и охлаждается. Преимущество поверхностной закалки деталей, так же как и большинства способов упрочнения поверхности (химико-термической обработки, поверхностного наклепа обкатки), состоит также в том, что в поверхностных слоях деталей возникают значительные сжимающие напряжения. В последнее время для термической обработки некоторых деталей применяют источники высококонцентрированной энергии (электронные и лазерные лучи).

Использование импульсных электронных пучков и  лазерных лучей для локального нагрева поверхности деталей позволяет вести поверхностную закалку рабочих кромок инструментов и сильно изнашивающихся областей корпусных деталей. Иногда тонкий поверхностный слой доводят до оплавления и в результате быстрого охлаждения получают мелкозернистую или аморфную структуру.

При закалке  с использованием источников высококонцентрированной  энергии не требуются охлаждающие среды, так как локально нагретые поверхностные слои очень быстро остывают в результате отвода теплоты в холодную массу детали. В качестве источников энергии используют ускорители электронов и непрерывные газовые и импульсные лазеры [4]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Заключение

        В данной работе были рассмотрены  основные виды термических обработок,  различных материалов, и оборудования  применяемое в производстве.

         Непрерывное улучшение качества, повышение производительности, надежности и долговечности машин в значительной степени определяется прогрессом технологии, важнейшим этапом которой является термическая обработка, формирующая окончательные, эксплуатационные свойства металлов.

Информация о работе Технология и оборудования термической обработки в машиностроение