Автор работы: Пользователь скрыл имя, 13 Октября 2010 в 10:06, Не определен
Целью работы является рассмотрение оборудования и технологии термической обработки
Обработку холодом проводят непосредственно после закалки путем погружения изделий в смесь авиационного бензина с жидким азотом на 1-1,5 часа.
Обработка холодом обычно применяется:
1. Для инструмента из быстрорежущих сталей и деталей
шарикоподшипников с целью повышения твердости;
2. Для улучшения свойств постоянных магнитов;
3. Для
стабилизации размеров точного
измерительного инструмента (
1.5. Отпуск закаленной стали
Отпуск
- вид термической обработки
Отпуску подвергают все закаленные стали с целью уменьшения внутренних напряжений, повышения ударной вязкости при некотором снижении твердости и прочности.
В зависимости от требований предъявляемых к изделиям их подвергают отпуску при различных температурах.
Низкий отпуск (150°-220°С) проводится с целью чуть-чуть снизить остаточные напряжения без существенного снижения твердости. Применяется для металлорежущего инструмента из высокоуглеродистых сталей и деталей работающих на истирание (например, шестерни). Получаемая структура - отпущенный мартенсит.
Средний отпуск (300°-500°С) проводят с целью более полно снять напряжения и повысить ударную вязкость за счет более значительного снижения твердости. Применяется для деревообрабатывающего инструмента, рессор, пружин, штампов. Получаемая структура - тростит отпуска.
Высокий отпуск (500°-680°С) проводят обычно для деталей из легированных сталей с целью получить хорошее сочетание прочности и ударной вязкости [1].
2.Термическая обработка чугунов.
Термическую обработку чугунов проводят с целью снятия внутренних напряжений, которые возникают при литье и вызывают изменения размеров и формы отливки с течением времени, снижение твёрдости и улучшение обрабатываемости резанием, повышение механических свойств.
Чугун подвергают отжигу, нормализации, закалке и отпуску, а также некоторым видам химико-термической обработки (азотированию, алитированию, хромированию) [1].
2.1 Отжиг
Отжигу для снятия внутренних напряжений подвергают чугуны при следующих температурах:
- серый чугун с пластинчатым графитом 500° –570°С;
- высокопрочный с шаровидным графитом 550° – 650°С;
- низколигированный 570° – 600°С;
- высоколигированный чугун (типа нирезист) 620° – 650°С.
Нагрев медленный со скоростью 70° – 100°С/ час, выдержка при температуре нагрева зависит от массы и конструкции отливки и составляет от 1-го до 8-ми часов. Охлаждение до 250°С (для предупреждения возникновения термических напряжений) медленное, со скоростью 20° – 50°С /ч, что достигается охлаждением отливки вместе с печью. Далее отливки охлаждают на воздухе.
При этом отжиге фазовых превращений не происходит, а снимаются внутренние превращения, повышается вязкость, исключается коробление и образование трещин в процессе эксплуатации.
Графитизирующий отжиг применяют для получения ковкого чугуна из белого чугуна и для устранения отбела отливок из серого чугуна.
Графитизацию при температурах выше критической можно представить следующим образом:
Цементит → аустенит и графит [1].
Процесс графитиззации начинается с возникновения графитных центров, которые наиболее легко зарождаются в местах нарушения сплошности – в закалочных и деформационных микротрещинах, усадочных микропорах. В исходном состоянии белый доэвтектический чугун имеет структуру, которая состоит из перлита, вторичного и эвтектического цементита. При переходе через эвтектоидный интервал температур перлит превращается в аустенит, а при повышении температуры до 950°-1000°С происходит распад цементита (эвтектического и вторичного) и образуется структура аустенит и графит. Этот процесс называют первой стадией графитизации.
Полной графитизации, то есть получения структуры, которая состоит из перлита и графита, можно достигнуть охлаждением чугуна;
1. в эвтектоидном интервале температур с такой скоростью, чтобы происходил прямой эвтектоидный распад аустенита на феррит и графит
(А → Ф + Г);
2. немного ниже эвтектоидного интервала температур с образованием из аустенита перлита [A → П ( Ф + Ц )] с выдержкой при этой температуре для графитизации эвтектоидного цементита (Ц → Ф + Г).
И в том и в другом случае будет получаться структура феррит и графит; этот процесс называют второй стадией графитизации.
Отжиг с предварительной закалкой заключается в том, что белый чугун подвергают закалке с 900°-950°С в воде или масле. При закалке, во время мартенситного превращения, образуются многочисленные микротрещины, в которых наиболее легко зарождаются центры графитизации.
Отжиг с предварительной низкотемпературной выдержкой заключается в том, что белый чугун выдерживают в течении 6-ти - 8-ми часов при температуре 350°-400°С. Число центров графитизации увеличивается, и сокращается время отжига. Механизм влияния низкотемпературной выдержки ещё не установлен.
Низкотемпературный отжиг применяют для снятия внутренних остаточных напряжений отливок серого чугуна. Данный отжиг проводят по следующему режиму: медленный нагрев отливок (30°-180°С/ч) до 530°-620°С, выдержка при этой температуре 1-4 часа (с момента нагрева до заданной температуры наиболее толстого сечения отливки) и медленное охлаждение вместе с печью со скоростью 10°-30°С/ч до 250°-400°С. В результате такого отжига внутренние остаточные напряжения уменьшаются на 80-85% и увеличивается количество феррита [1].
2.2 Нормализация
Нормализацию применяют для увеличения связанного углерода, повышения твердости, прочности и износостойкости серого, ковкого и высокопрочного чугунов. При нормализации чугун нагревают выше температур интервала превращения (850°-950°С) и после выдержки в течение 0.5-3.0 часа, при которой должно произойти насыщение аустенита углеродом, охлаждают на воздухе.
Растворение графита в Y-фазе является важным процессом при нормализации чугуна с ферритной или феррито-перлитной структурой. Этот процесс подобен цементации стали; разница в том, что при цементации происходит насыщение поверхностного слоя стальной детали углеродом из внешней среды, а при нагреве чугунной отливки «карбюризатором» являются многочисленные включения графита, расположенные в металлической основе, и насыщение углеродом происходит во всём объёме отливки [3].
2.3 Закалка
При закалке чугуна превращения аналогичны превращениям, происходящим при закалке стали. Но в связи с наличием в чугуне включений графита закалка чугунов имеет следующие особенности.
Закалка проводится из двухфазного аустенито-графитного состояния.
При нагреве происходит растворение графита в аустените, в связи с чем, несмотря на различную исходную структуру чугуна, превращению при охлаждении подвергается аустенит с эвтектоидной или заэвтектоидной концентрацией углерода. Закалке подвергают серый, ковкий и высокопрочный чугун для повышения твёрдости, прочности и износостойкости. По способу выполнения закалка чугуна может быть объёмной непрерывной, изотермической и поверхностной.
При объёмной непрерывной закалке чугун нагревают под закалку (медленно для отливок сложной конфигурации) до температуры на 40° – 60°С выше интервала превращения (обычно до 850° – 930°С) с получением структуры аустенит и графит. Затем дают выдержку для прогрева и насыщения аустенита углеродом; выдержка тем длиннее, чем больше феррита и меньше перлита, например, 10 – 15 мин для перлитных чугунов и до 1,5 – 2 часа для ферритных чугунов. Отливки охлаждают в воде (простой конфигурации) или в масле (сложной конфигурации).
При изотермической закалке чугун нагревают до 830° – 900°С выдерживают 0,2 – 1,5 часа и охлаждают в расплавленных солях, имеющих температуру 250° – 400°С, и после выдержки охлаждают на воздухе. Структура чугуна после изотермической закалки состоит из бейнита, остаточного аустенита и графита. Преимущество изотермической закалки – резкое уменьшение закалочных напряжений и коробления.
Поверхностную закалку с нагревом с помощью токов высокой частоты применяют для повышения поверхностной твёрдости и износостойкости чугунных отливок. Поверхностной закалке рекомендуется подвергать перлитные чугуны. Это объясняется тем, что при нагреве перлитных чугунов нет необходимости в насыщении аустенита углеродом за счёт растворения графита. Превращения, происходящие при поверхностной закалке таких чугунов, аналогичны превращениям при поверхностной закалке перлитных чугунов 840° – 950°С, время нагрева – несколько секунд, скорость нагрева около 400°С/с, охлаждение в воде или эмульсии. Микроструктура поверхностного слоя – мелкоигольчатый мартенсит и включения графита. После поверхностной закалки проводится низкий отпуск. Поверхностной высокочастотной закалке подвергают детали из перлитного чугуна, работающие на износ – направляющие станин станков (изготовляемые из модифицированного серого чугуна), коленчатые и кулачковые валы (из высокопрочного чугуна), гильзы цилиндров (из легированного чугуна) и другие детали [1].
2.4 Отпуск
Отпуск проводится с целью снятия термических напряжений, повышения твёрдости, прочности и износостойкости. Нагрев проводят медленный для
сложных изделий до температуры 150° – 300°С для деталей работающих на износ или 400° – 600°С, затем дают выдержку 1 – 3 часа. Охлаждение проводят на воздухе [3].
3. Технология термической обработки цветных металлов.
3.1Алюминий и его сплавы
подвергают различным видам термической обработки в зависимости от состава сплавов, вида полуфабрикатов, деталей и заготовок, а также их назначения. В алюминии нет полиморфного и мартенситного превращений. Поэтому для алюминиевых сплавов виды термической обработки, связанные с этими превращениями, исключены.
Отличительная
особенность алюминия заключается
в его высокой
Наибольшее распространение для алюминиевых сплавов получили три вида термической обработки: отжиг, закалка и старение.
Отжиг. Отжиг
алюминиевых сплавов применяют
в том случае, когда необходимо
ликвидировать нежелательные
1. Неравновесное состояние, свойственное литым сплавам. При получении слитков и отливок скорости охлаждения достаточно высоки, и поэтому кристаллизация протекает в неравновесных условиях, что приводит к явлениям дендритной ликвации компонентов сплава. При этом легирующие компоненты в примеси распределяются неравномерно по объему литых зерен, а на границах появляются неравновесные интерметаллические фазы. Такой характер структуры обусловливает низкую технологическую пластичность сплавов и малую коррозионную стойкость.
2. Неравновесное состояние, вызванное пластической деформацией, при которой происходят существенные структурные изменения, часть энергии деформации поглощается, и свободна" энергия системы повышается.
Информация о работе Технология и оборудования термической обработки в машиностроение