Автор работы: Пользователь скрыл имя, 12 Декабря 2010 в 21:04, курсовая работа
Приведен расчет материального и теплового баланса процесса на основании практики конвертирования медно-никелевых штейнов рудотермических печей комбината «Печенганикель».
Введение…………………………………………………………………………4
1. Теоретическая часть
1.1 Характеристика исходных материалов процесса конвертирования…….5
1.2. Теоретические основы процесса конвертирования медно-никелевых штейнов………………………………………………………………………….7
1.3 Продукты конвертирования……………………………………………….10
2. Материальный баланс процесса
2.1 Технологическая схема конвертирования………………………………..13
2.2 Расчет ведем в соответствии с технологической схемой……………….13
3 Аппаратно-технологическая схема конверторного передела…………….22
Список использованной литературы………………………………………....23
Федеральное агентство по образованию
Санкт-Петербургский государственный горный институт им. Г.В. Плеханова
(технический
университет)
КУРСОВОЙ
ПРОЕКТ
По дисциплине
______________________________
______________________________
(наименование
учебной дисциплины
согласно учебному
плану)
ПОЯСНИТЕЛЬНАЯ
ЗАПИСКА
Выполнил: студент гр. ММ-05 ____________________ / Иванов А.А. /
ОЦЕНКА: _____________
Дата: ___________________
Руководитель проекта __профессор__ __________________ / Петров Г. В. /
(должность)
Санкт-Петербург
2008
В работе освещены вопросы
теории и практики
In work the questions of the theory and practice of converting copper-nikel
stein are covered. The account of material and thermal balance of process
is carried out on the basis of practice of converting copper-nikel stein
ore-thermal of furnaces of combine «Pechenganikel».
Введение…………………………………………………………
1. Теоретическая часть
1.1 Характеристика исходных материалов процесса конвертирования…….5
1.2. Теоретические
основы процесса
1.3 Продукты конвертирования………………
2. Материальный баланс процесса
2.1 Технологическая
схема конвертирования………………………
2.2 Расчет ведем
в соответствии с
3 Аппаратно-технологическая схема конверторного передела…………….22
Список использованной
литературы………………………………………....
Введение
Технологическая
схема переработки медно-
Рис.1.
Технологическая схема АО “ГМК Печенганикель”
Основной
технологической задачей
Конвертерные газы после очистки от пыли, поступают в оборот, выбрасывают в атмосферу или передают в сернокислотный завод для получения серной кислоты.
Файнштейн далее поступает на операцию разделения никеля и меди.
Файнштейн является конечной продукцией комбината. Его дальнейшая переработка осуществляется на комбинате «Североникель».
В таблицах 1 и 2 приведены опытные данные конвертирования.
Таблица 1.
Таблица 2.
Штейн - промежуточный продукт, представляющий сплав сульфидов железа и цветных металлов переменного химического состава, в нём аккумулируются имеющиеся в сырье благородные и сопутствующие металлы.
Таблица 3.
Штейн имеет низкое содержание серы, в связи с этим серы штейна не хватает для связывания всех металлов в сульфид и часть металлов находится в нем в свободном состоянии, такие штейны называют металлизированными.
Штейны обеднительного передела имеют большую степень металлизации. Это существенно влияет на режим процесса конвертирования.
Так же используется штейн из рудотермических печей, получаемый при плавке в РТП руды, обожженных окатышей, оборотного шлака и флюса, а так же штейн из электропечей обеднения конверторного шлака, получаемый при переработке в ЭПО конверторного шлака.
Флюсы
- материалы, применяемые в металлургических
процессах с целью образования
или регулирования состава
Кварцевый флюс (70-75% SiO2) при конвертировании штейнов отвечает всем необходимым требованиям. Необходимо отметить, что кварцевый флюс в конверторном процессе применяют еще и в качестве регулятора температуры. Так же в качестве флюса применяется речной песок (65-68% SiO2).
По техническим условиям содержание кремнезема SiO2 не должно быть ниже 67 %. Обычно предпочитают флюсы с максимальным содержанием кремнезема, поскольку в этом случае расход флюса минимален, а процесс шлакообразования протекает наиболее успешно. Влажность кварцевого флюса не должно превышать 2 %.
Руда с низким содержанием металлов подвергается переработке на обогатительной фабрике в городе Заполярном. Полученный медно-никелевый сульфидный концентрат поступает в цех обжига, также расположенный в Заполярном. Обожженные окатыши поступают на рудную электроплавку в плавильный цех в поселке Никель. В сернокислотном цехе перерабатывают газы конверторного передела, содержащие в среднем 3% диоксида серы.
Богатые сульфидные медно-никелевые руды перерабатываются по схеме прямой селективной флотации с последовательным получением медного, никелевого, пирротинового концентратов и отвальных хвостов. Далее производится плавка.
Конвертирование штейнов — один из основных металлургических процессов в производстве меди и никеля. Конвертерный передел является частью плавильного цеха. В нем размещаются конвертеры - агрегаты, в которых перерабатывается медно-никелевый штейн, поступающий из рудно-термических и обеднительных электропечей. Целью конвертерного процесса является удаление из штейна практически всего железа и получение продукта, который называется файнштейном. В файнштейн с возможной полнотой должны быть извлечены никель, медь, кобальт, благородные (платина, рутений, родий, иридий, осмий) металлы.
В конверторах расплавленный штейн продувают воздухом в присутствии вводимого в конвертер кварцевого флюса. Образующее при продувке закисное железо FeO взаимодействует с кварцем флюса, образуя силикат типа фаялита [(FeO)2ґ´SiO2].
В операции конвертирования получают три конечных продукта: файнштейн; конверторный шлак и запыленные отходящие газы, содержащие сернистый ангидрид (SO2).
Конверторный шлак направляют на операцию обеднения для обеспечения более высокого извлечения ценных металлов в файнштейн.
Конверторные газы после очистки от пыли, поступающей в оборот, выбрасывают в атмосферу или передают на сернокислотный завод для получения серной кислоты.
Файнштейн далее поступает на операцию разделения никеля и меди.
Сульфиды железа, кобальта, никеля и меди, из которых в основном состоит штейн, каждый в отдельности, при температуре конвертирования (1200С-1300oС) обладает высоким сродством к кислороду. Это означает, что каждый сульфид способен активно окисляться кислородом по следующим реакциям:
FeS
CoS
Cu2
2ґ´
Ni3
Высокое сродство к кислороду при температурах конверторного процесса имеют также свободные металлы -- железо, кобальт, никель и медь -- и поэтому, они каждый в отдельности, весьма, активно взаимодействуют с кислородом.
При совместном присутствии в расплаве металлы и сульфиды окисляются не одновременно, а в определенной последовательности в соответствии с величинами их сродства к кислороду или сере.
При
продувке воздухом медно-никелевого штейна,
не содержащего свободных
Находящийся в расплаве FeS защищает сульфиды Со, Ni и Cu от окисления, так как обменные реакции MeO+FeS=MeS+FeO, где Me означает Со, Ni, Cu, протекают слева направо. Основная реакция конвертирования неметаллизированных штейнов:
2ґ´FeS+3ґ´O2+SiO2= (FeO)2ґ´SiO2+2ґ´SiO2 .
Информация о работе Металлургия и основы металлургического производства