Автор работы: Пользователь скрыл имя, 11 Января 2011 в 22:17, реферат
С развитием металлургической промышленности растет объем и номенклатура металлических изделий в строительстве и особенно ассортимент из алюминия. Из стального проката возводят каркасы промышленных и гражданских зданий, мосты, изготовляют арматуру для железобетона, кровельную сталь, трубы, а также различные металлические изделия, заклепки, болты, гвозди, шурупы. Различный профиль алюминия используют для изготовления несущих и ограждающих конструкций, в Широкому использованию металлов в строительстве способствует ряд их ценных технических свойств: высокая прочность, пластичность, повышенная теплопроводность, электропроводность и свариваемость.
Введение
1.Металлические конструкции
2. Общая характеристика и основы проектирования металлических конструкций
2.1 Номенклатура стальных конструкций
2.2 Достоинства и недостатки стальных конструкций
2.3 Требования, предъявляемые к металлическим конструкциям
3.1 Балки и балочные конструкции
3.1.1 Классификация балок
3.1.2 Прокатные балки
3.1.3 Составные балки
3.1.4 Дистальные балки
3.1.5 Балки замкнутого сечения
3.1.6 Балки с гибкой стенкой
3.1.7 Балки с гофрированной стенкой
3.1.8 Балки с перфорированной стенкой
3.2 Колонны и элементы стержневых конструкций
3.3 Фермы
3.4 Технологические площадки
3.4.1 Общие сведения. Классификация
3.4.2 Балочные клетки
3.4.3 Настилы
3.4.4 Лестницы и переходные площадки
Литература
3.1.5 Балки замкнутого сечения
Балки замкнутого сечения обладают рядом преимуществ по сравнению с открытыми. К ним относятся:
- более высокая
несущая способность
- ввиду существенного
увеличения (в десятки раз) момента
инерции на кручение в
- элементы с замкнутыми
сечениями более устойчивы при
монтаже, менее подвержены
Несмотря на названные достоинства, конструктивные элементы с замкнутыми сечениями не нашли в настоящее время широкого применения. И объясняется это прежде всего низкой технологичностью и, как следствие, большей трудоемкостью изготовления.
Конструктивные решения
Замкнутые, в частности
коробчатые, сечения применяют при
необходимости увеличения жесткости
балок в поперечном направлении,
при отсутствии поперечных связей,
изгибе в двух плоскостях наличии
крутящих моментов, при ограниченной
строительной высоте и больших поперечных
силах. Подобным силовым воздействиям
при названных конструктивных ограничениях
подвергаются балочные конструкции
мостов, силовых элементов промышленных
сооружений, кранов и др. Возможные
формы сечения балок
3.1.6 Балки с гибкой стенкой
Балки с гибкой (очень тонкой) стенкой появились впервые в конструкциях каркасов летательных аппаратов, где для легкости стенки выполняли зачастую не из металла, а из прочной ткани (перкаль, брезент). Плоская стенка в такой балке теряет устойчивость в начальной стадии нагружения, приобретая вторую устойчивую форму - в виде наклонно гофрированной (у опор, где преобладает сдвиг) либо вспорушенной ( в зонах с преобладающими напряжениями сжатия) поверхности. После снятия нагрузки эти деформации стенок, называемые часто "хлопунами", исчезают. В строительстве стали применять такие балки в 70-е годы текущего века. Они являются дальнейшим воплощением идеи о тесной связи показателей экономической эффективности с понятием тонкостенности. Уменьшение относительной толщины стенки λw = hw / tw в 2...3 раза приводит к снижению расхода металла на стенку на 25...35% и к концентрации металла в поясах, что выгодно по условиям работы на изгиб. Применение балок с очень тонкими стенками уместно при стабильном направлении действия статических временных нагрузок, поскольку работа таких балок при переменных по направлению подвижных и динамических нагрузках еще недостаточно изучена. Особенности работы конструкции балок. На первой стадии работы балки ее гибкая стенка остается плоской, как и в обычной балке. Но по протяженности эта стадия работы коротка и заканчивается потерей устойчивости стенки, т.е. переходом в закритическую стадию работы с появлением "хлопунов". В закритической стадии работы уже не соблюдается линейная зависимость между деформациями стенки и нагрузкой. Развиваются зоны выпучивания стенки с образованием растянутых складок, натяжение которых вызывает местный изгиб поясов балки, а также сжатие поперечных ребер жесткости и изгиб опорных ребер в плоскости стенокВ третьей стадии развиваются пластические деформации в стенке и в поясах. Нарастает прогиб балки; интенсивность роста прогиба к концу этой стадии резко повышается и в отсеках балки образуется пластический механизм - балка приходит в предельное состояние с появлением чрезмерных остаточных деформаций. При дальнейшем, даже незначительном, возрастании нагрузки балка теряет несущую способность либо вследствие потери местной устойчивости полки сжато-изогнутого пояса, либо из-за потери устойчивости пояса в плоскости стенки, как стержня, от действия сжимающей силы и изгибающего момента. Не исключена и общая потеря устойчивости плоской формы изгиба балки, если последняя не раскреплена надлежащим образом от боковых деформаций. Отметим также, что описанные формы потери устойчивости пояса балки могут произойти и не в конце третьей стадии, а даже и на предыдущих стадиях, если размеры элементов пояса выбраны неудачно. Учет особенностей работы балок с гибкими стенками привел к необходимости разработки адекватных рекомендаций по их конструктивным решениям. Возможно применение балок: с поперечными ребрами, приваренными к стенке - двусторонними и односторонними, или не связанными с нею; без поперечных ребер. Безреберные балки требуют строго центрированного приложения нагрузки в плоскости стенки, ибо пояса их практически не закреплены от закручивания. Более часто применяют балки с ребрами жесткости, имеющими назначение, как и в обычных балках, для восприятия местных нагрузок от второстепенных балок и для ограничения длины отсека. В работе ребер, подкрепляющих гибкие стенки, есть и свои особенности, определяемые работой стенок в закритической стадии. Пояса в балках с гибкими стенками работают не только на сжатие, но и на изгиб от натяжения стенки, поэтому целесообразно применять сечения поясов с повышенной жесткостью на изгиб и кручение. По технологичности более предпочтительны сечения с поясами из полосовой стали и широкополочных тавров; при значительных нагрузках возможно применение поясов из прокатных или гнутых швеллеров либо из широкополочных двутавров. Сечения балок с повышенным объемом сварки уступают остальным по трудоемкости изготовления. По статической схеме балки с гибкой стенкой могут быть разрезными и неразрезными, а по очертанию - постоянной или переменной высоты (двускатные либо односкатные). Применяют такие балки в качестве прогонов, стропильных и подстропильных конструкций пролетом 12...36 м с соотношением постоянных и временных нагрузок 1/1,5...1/2, балок жесткости комбинированных балочно-вантовых систем, балок-стенок бункеров, стенок крупногабаритных вентиляционных коробов, газоводов и т. п.
3.1.7 Балки с гофрированной стенкой
Одним из путей снижения металлоемкости балок является гофрирование их стенок. В обычных балках толщина стенок, как правило, определяется не условием прочности, а требованиями местной устойчивости. Постанова поперечных ребер смягчает ситуацию, позволяя уменьшить толщину стенок и одновременно повышая крутильную жесткость балок, так как ребра играют роль диафрагм и обеспечивают неизменяемость контура поперечного сечения. Еще в середине 3-го десятилетия XX в. появилась идея гофрирования стенок балок, которое еще более эффективно обеспечит желаемые результаты. Гибкость таких стенок можно повысить до 300...600, к тому же чем тоньше стенка, тем легче выполнить ее гофрирование. Толщину гофрированных стенок принимают в пределах 2...8 мм, что обеспечивает им все преимущества, определяемые тонкостенностью. В изготовлении стенок появляется дополнительная технологическая операция - гофрирование - и несколько осложняется сварка поясных швов, но уменьшение толщины стенки и исключение значительного числа ребер жесткости приводят в конечном счете к снижению трудозатрат на изготовление балок на 15...25%. По трудоемкости изготовления и расходу металла балки с гофрированной стенкой выигрывают и у балок с гибкой стенкой благодаря резкому снижению числа ребер жесткости, повышенной крутильной жесткости балок и высокой местной устойчивости стенки. При выборе конструктивного решения балки с гофрированной стенкой приходится учитывать не только особенности напряженно-деформированного состояния балки под нагрузкой, но и требования технологичности. Наиболее просты и технологичны в изготовлении стенки с треугольными гофрами, но стенки с волнистыми гофрами более устойчивы. Практикуется и применение полос из готового профнастила . Изготовление балок с гофрированной стенкой целесообразно вести на заводах металлоконструкций, организуя там специальные участки с прессами или иными установками для гофрирования и стендами для сварки поясных швов. Сварочные автоматы должны быть приспособлены для перемещения по ломаным и волнистым линиям примыкания гофрированной стенки к поясу. Плоский лист подается между двумя валками, вращающимися навстречу друг другу. На поверхности валков предусмотрены устройства для закрепления съемных пластин, осуществляющих перегибы плоского листа при повороте валков. Использование съемных пластин различных размеров дает возможность варьировать параметры гофров. Для создания криволинейных гофров требуются более сложные съемные элементы. Волнистые гофры можно получить и прессованием пластин между двумя матрицами, но для варьирования параметров гофров в этом случае требуется довольно большой набор матриц. Особенности работы и конструкции балок. Уже первые испытания балок с гофрированными стенками выявили особенности напряженного состояния стенок и поясов: нормальные напряжения развиваются в стенках лишь у поясов и быстро падают практически до нуля, поскольку жесткость тонкой стенки поперек гофров очень мала; касательные же напряжения распределяются по высоте стенки почти равномерно. Жестко связанные с поясом гофры передают на него усилия, вызывая в поясе переменный по величине и направлению изгиб в его плоскости. Балки с гофрированной стенкой дольше работают в упругой стадии, чем балки с гибкой стенкой той же толщины, вплоть до потери устойчивости стенки как ортотропной пластинки. Пояса балок с гофрированной стенкой также работают в лучших условиях, поскольку они не испытывают изгиба в плоскости стенки. Деформативность балок с гофрированной стенкой на 15...20 % ниже, чем у балок с гибкой стенкой с теми же параметрами. Предельное состояние балки с гофрированной стенкой, как правило, наступает с потерей местной устойчивости стенки под действием местных сосредоточенных сил, если не установлены ребра жесткости под ними. В стенках с треугольными гофрами, работающими на сдвиг, сначала теряет устойчивость плоская полоска гофра, затем потеря устойчивости распространяется на несколько гофров, что можно считать потерей устойчивости стенки как ортотропной пластинки. После этого пояс теряет устойчивость в плоскости стенки так же. как и в балке с гибкой стенкой. В балках с достаточно жесткими гофрированными стенками предельное состояние может наступить из-за развития чрезмерных остаточных деформаций (вторая группа предельных состояний). Свойства гофра определяются толщиной стенки и геометрическими параметрами гофрирования - длиной волны а и высотой волны ƒ. В расчетной практике чаще используют относительные параметры a/hw, ƒ/a и ƒ/tw. Местная устойчивость гофрированных стенок балок может быть повышена, если вместо вертикального гофрирования применить наклонное с нисходящими гофрами. Оптимальный угол наклона гофров к верхнему поясу равен 45...50°. Однако изготовление таких стенок усложняется и, как следствие, балки с наклонно гофрированными стенками широкого применения не нашли. Но надо иметь в виду, что гофры могут быть не только открытыми (когда сечение гофра выходит на край листа), но и глухими, т.е. выштампованными в стенке, не выходящими на край листа. Не исключена возможность гофрирования тонких стенок в готовом изделии, а следовательно, возможно применение глухих наклонных гофров. Балки с гофрированными стенками проектируют обычно двутаврового сечения с поясами из листов, причем здесь не требуется повышенная жесткость поясов на изгиб и кручение (в отличие от балок с гибкой стенкой); сечение поясов может быть достаточно развитым по ширине и переменным по длине в соответствии с очертанием эпюры изгибающих моментов, что обеспечивает дополнительную экономию металла. Область применения балок с гофрированной стенкой шире, чем балок с гибкой стенкой: они применимы в подкрановых конструкциях и во всех других случаях, когда требуется повышенная жесткость балок на кручение.
3.1.8 Балки с перфорированной стенкой
Стремление повысить
эффективность использования
3.2 Колонны и элементы стержневых конструкций
Общая характеристика конструкций
Колонна является древнейшей строительной конструкцией. Более 3000 лет тому назад египтяне вытесывали из камня колонны для надгробных памятников, а в V в. до н.э. колонна заняла центральное место в колоннадах общественных зданий у древних греков и римлян. Такие колонны воздвигались исключительно по эмпирическим правилам, заимствованным из окружающего мира. Научный подход к изучению проблемы работы сжатых конструкций был начат в XVIII в., когда Петрус Ван-Мусшенбрук построил установку для испытаний на сжатие, а Леонард Эйлер получил свою знаменитую формулу, к которой мы будем неоднократно обращаться. Было установлено, что несущая способность центрально-сжатого стержня обратно пропорциональна квадрату его длины, т.е. в два раза более длинный стержень несет в четыре раза меньшую нагрузку. К сожалению, формула Эйлера, содержащая произвольное целое число, которому в то время не могли найти объяснения, а также слабое соответствие этой формулы экспериментальным данным (как мы сегодня знаем, плохо обоснованным) привели к ее забвению почти на 200 лет. Лишь в конце прошлого века эта формула получила всеобщее признание и дальнейшее развитие, которое продолжалось на фоне острых дискуссий до середины нашего столетия. С существом этих дискуссий мы познакомимся позднее, а сейчас рассмотрим лишь краткую характеристику конструкций, работающих на сжатие. Колонны, стойки, стрелы кранов и другие продольно сжатые конструкции с точки зрения их расчета имеют общие черты с отдельными элементами, входящими в состав других конструкций или стержневых систем, например со стержнями ферм, элементами связей и т.п. Это позволяет их рассматривать в составе одной главы, но с разной степенью детализации. При всем многообразии такие конструкции имеют общие формальные признаки - все они работают на сжатие или на сжатие с изгибом, а их длина в 10...20 раз и более превышает размеры поперечных сечений. Конструкция состоит из собственно стержня и опорных устройств, технические решения которых зависят от назначения конструкции и особенностей, узловых сопряжении. По форме силуэта конструкции могут быть постоянного сечения, переменного сечения и ступенчатыми. Изменение сечения по длине позволяет снизить металлоемкость, но незначительно, поэтому такие стержни проектируют из архитектурных соображений либо когда снижение массы приводит к дополнительным эффектам, например в подвижных конструкциях типа крановых стрел. Типичными представителями сжатых стержневых конструкций являются колонны и стойки, состоящие из стержня, оголовка, базы, иногда консоли. Оголовок служит для опирания и крепления вышележащих конструкций. База выполняет две функции - распределяет усилие, передаваемое колонной на фундамент, снижая напряжение до расчетного сопротивления фундамента, и обеспечивает прикрепление к нему колонны с помощью анкерных болтов. На консоли могут опираться подкрановые балки, стеновые панели, технологические коммуникации и т. п. Мощные стержни типа колонн, стоек, элементов тяжелых ферм выполняют из одиночных широкополочных двутавров или составляют их из нескольких прокатных профилей. Составные стержни могут быть сплошностенчатыми - сплошными - и сквозными. Последние в свою очередь делят на стержни с безраскосной решеткой, решетчатые и перфорированные. Ветви (пояса) безраскосных стержней объединяют планками из листовой стали, жесткими вставками или перфорированными листами. Перфорированные стержни могут быть выполнены также гнутосварными из зигзагообразно разрезанных листов или из прокатных профилей, которые после предварительной фигурной резки объединяют в крестообразное сечение. При всей своей привлекательности перфорированные стержни находят ограниченное применение, что связано с дополнительными операциями и необходимостью иметь оборудование для фигурной резки и гибки заготовок в форме гнутых швеллеров или уголков. При изготовлении стоек из перфорированных прокатных профилей необходимы операции правки, так как после резки исходного профиля полученные заготовки изгибаются в разные стороны вследствие наличия в исходном металлопрокате остаточных напряжений. Элементы стержневых конструкций небольших поперечных размеров проектируют из круглых или прямоугольных труб, одиночных либо спаренных уголков. По виду напряженного состояния стержни делят на центрально-сжатые, внецентренно сжатые и сжато-изгибаемые. Аналогичную классификацию используют для наименования растянутых элементов.