Литейные свойства сплавов

Автор работы: Пользователь скрыл имя, 18 Февраля 2011 в 11:11, реферат

Описание работы

Заполнение литейных форм является сложным гидродинамическим и физико-химическим процессом. Главным фактором, определяющим уровень жидкотекучести, являются свойства сплава в жидком состоянии: теплофизические свойства, особенности кристаллизации, вязкость, окисляемость.

Файлы: 1 файл

Копия politologiya.doc

— 404.00 Кб (Скачать файл)

  Основными составляющими песчано-глинистых  смесей являются кварцевый песок, состоящий  преимущественно из зерен кварца SiO2,, и огнеупорная глина (каолинит) Al2O3 * 2SiO2 * 2H2О. при температуре 100 oС и выше удаляется гироскопическая влага. При температуре 450-600 oС происходит распад каолинита на метакаолин и воду:

  Al2O3 * 2SiO2 * 2H2О.= Al2O3 * 2SiO2 + 2H2О.

  Из  анализа изменения изобарно-изотермического потенциала представленных выше четырех реакций вытекает, что преимущественное развитие получают реакции (1) и (4). Таким образом, с термодинамической точки зрения для уменьшения химического пригара на стальном литье желательно в форме создать восстановительную или же нейтральную атмосферу.

  Объемная  усадка. Объемная усадка металлов и сплавов характеризует изменение объема металла при понижении температуры в жидком состоянии, в процессе затвердевания и при охлаждении твердого металла.

  Согласно  схеме, предложенной А.А. Бочваром, полная объемная усадка распределяется между объемом концентрированной усадочной раковины и объемом усадочной пористости. Чем больше эффективная часть температурного интервала кристаллизации (разница температур начала усадки и солидуса), тем большая доля объемной усадки проявляется в виде усадочных пор. В сплавах, кристаллизирующихся при постоянной температуре (чистые металлы, сплавы эвтектического состава), усадочная пористость практически не образуется.

  Линейная  усадка. Линейная усадка металлов и сплавов отражает изменение линейных размеров отливки после образования на ее поверхности жесткого кристаллического скелета и охлаждения до комнатной температуры.

  В отливах из чистых металов температура  начала линейной усадки соответствует температуре плавления. Линейная усадка в этом случае пропорциональная линейному коэффициенту термического расширения и разности между температурами плавления и комнатной:

  ε = αt (tпл - t20)*100,

  где, ε - коэффициент линейной усадки, %, α  t - средний линейный коэффициент расширения металла в интервале от tпл до t20; tпл и t20 - соответственно температуры плавления и комнатной.

  Участок диаграммы состояния между температурой начала линейной усадки и температурой солидус назван А.А. Бочваром эффективным  интервалом кристаллизации.

  Трещиностойкость. Это - способность металлов и сплавов к релаксации (ослаблению, уменьшению) напряжений, возникающих в отливке при затвердевании и охлаждении, в результате усадки, фазовых превращений или температурного перепада.

  В практике литья обычно различают два вида трещин - горячие и холодные. Это деление весьма условно. Считается, что горячие трещины образуются в области, близкой к температуре солидус. По внешнему виду эти трещины отличаются окисленной поверхностью, в особенности - на стальных отливках. Холодные трещины, в отличие от горячих, имеют поверхность и образуются в области упругих деформаций при температуре, которая значительно ниже температуры окончания кристаллизации.

  Свариваемость. От свариваемости сплавов зависит качество исправления дефектов отливок и надежность соединения литых деталей методом сварки.

  Для художественных отливок это свойство имеет большое значение. Особенно важно обеспечить надежное соединение крупных элементов скульптур.

  В литейной практике свариваемость обычно оценивают по склонности к образованию сварочных трещин и по разупрочнению околошовной зоны. Трещин в зоне сварного шва могут появиться при его остывании в результате возникновения больших термических напряжений. Свариваемость оценивают также, сопоставляя свойства шва и околошовной зоны со свойствами основного металла.

Штамповка на молотах.

  При объемной штамповке поковку требуемой формы и размеров получают с помощью специального инструмента, назывемого штампом. Формоизменение поковки производится в полостях штампа, называемых ручьями.

  Применяется 2 вида ручьев:

  • открытый;
  • закрытый.

  У открытых зазор между  половинами штампа переменный и уменьшается в процессе деформирования поковки. В этот зазор вытекает металл в облой, закрывая выход основного металла, тем самым способствуя заполнению полости ручья. В конце штамповки в облой вытесняются излишки металла.

  При штамповке в закрытых ручьях зазор между половинами штампа небольшой и предназначен для обеспечения взаимной подвижности частей штампа. В процессе штамповки он остается постоянный и в него может вытекать металл, образуя торцовый заусенец. Наличие заусенца указывает на излишек металла в заготовке. Важно: объем заготовки для такого ручья должен быть точным, так как излишек металла вызывает не только образование заусенца, но и приводит к значительному возрастанию напряжений в полости ручья и более интенсивному его износу.

  Исходным  для штамповки  является прутковый  материал преимущественно  круглого поперечного  сечения. Из такой  заготовки затруднительно получить удлиненную поковку сложной  формы в одном  штамповочном ручье. Для получения  поковки без значительного  перерасхода материала заготовке необходимо придать форму, близкую к форме поковки. Такое формообразование выполнятеся в заготовительных ручьх штампа.

  Заготовительные ручьи – служат для перераспределения металла исходной заготовки по длине в соответствии с его распределением в поковке. Заготовительные ручьи также делят на открытые и закрытые.

  В закрытых заготовительных  ручьях течению металла  в требуемом направлении  способствуют ограничения  в виде боковых  стенок ручья.

  При обработке в заготовительных  ручьях, в отличии от штамповочных, всегда должно быть некоторое недозаполнение полости ручья. В противном случае металл будет вытекать в зазор между штампами, образуя заусенец, который будет заштампован в окончательном ручье, что приведет к браку.

Молоты  относятся к кузнечно-штамповочному оборудованию динамического действия. Основные их недостатки заключаются в передаче сотрясений при ударах на близко стоящее оборудование, на конструкции здания кузнечного цеха и окружающих строений, в большом шуме и невысокой точности получаемых поковок. Несмотря на эти недостатки молоты в настоящее время достаточно широко применяются в промышленности, так как динамическое воздействие на заготовку эффективно в случаях штамповки поковок сложной формы, а также при обработке труднодеформируемых и жаропрочных сплавов.

Для горячей  объемной штамповки в настоящее  время применяют паровоздушные, механические и гидравлические молоты. Наибольшее распространение получили паровоздушные молоты.

Паровоздушный штамповочный молот двойного действия работает по тому же принципу, что и ковочный, но имеет некоторые конструктивные отличия. Если при ковке получают изделия простой формы, то при штамповке стремятся достичь максимального приближения формы поковки к форме готового изделия, и поковки получаются довольно сложными — с ребрами, выступами, полостями и т. п. Поэтому необходимо, чтобы удар был как можно жестче, т. е. максимальная доля энергии удара затрачивалась бы только на деформирование поковки. Это обеспечивается большой жесткостью падающих частей и большой массой шабота. Масса шабота штамповочного молота в 20 раз больше массы его падающих частей. Совмещение осей верхней и нижней частей штампа при штамповке обеспечивается наличием удлиненных регулируемых направляющих и креплением стоек молота непосредственно на шаботе. В процессе штамповки кузнец сам управляет молотом, нажимая на педаль или рукоятку.

Паровоздушные штамповочные молоты изготавливаются  по ГОСТ 7024—75 восьми типоразмеров с  массой падающих частей от 630 кг до 25 т.

Для штамповки  применяются также паровоздушные бесшабашные молоты с двусторонним ударом. У этих молотов отсутствует шабот, а бабы движутся навстречу друг другу. В результате энергия удара почти целиком расходуется на деформацию поковки и взаимно поглощается бабами, не передаваясь на фундамент. Верхняя баба является ведущей. Перемещаясь вниз под действием давления пара или сжатого воздуха, она приводит в движение нижнюю бабу через механическую или гидравлическую связь.

При гидравлической связи нижняя баба разгоняется силой  давления жидкости в нижнем цилиндре. При движении верхней бабы вниз штоки давят на плунжеры, толкая их вниз. В результате жидкость (минеральное масло), находящаяся в замкнутом объеме, из боковых полостей корпуса нижней поперечины вытесняется в среднюю и перемещает плунжер вверх, а через шток и нижнюю бабу вверх вплоть до соударения. К моменту удара нижняя баба развивает такую же скорость, как и верхняя. В местах соединения штоков с бабами имеются амортизаторы, а гидроудары в жидкости смягчаются компенсаторами.

Молоты  такой конструкции обладают высокой надежностью и изготавливаются с энергией удара до 1 400 000 Дж, что эквивалентно паровоздушному молоту с массой падающих частей 70 000 кг. Главный недостаток бесшаботных молотов — невозможность штамповки в многоручьевых штампах, так как затруднено перемещение заготовки из ручья в ручей. Наилучшие результаты получаются при штамповке в одноручьевых штампах тяжелых заготовок осе симметричных деталей — шестерен, фланцев, втулок и т. п.

Классификация способов сварки 

  Существует  много видов сварки, при этом есть несколько классификаций сварки — по источнику теплоты, например: дуговая и плазменная сварка; по термомеханическому классу, например: контактная и диффузионная сварка и по механическому классу — ультразвуковая и сварка взрывом. Также в разделе рассмотрены методы сварки

Сварка трением

  Сварка  трением — образование сварного соединения при такой разновидности  сварки давлением происходит при  взаимном перемещении свариваемых  изделий относительно друг друга при действии на них давления.

  Последовательность  образования сварного соединения:

  1. Снятие оксидной пленки в результате действия сил трения.
  2. Постепенный разогрев кромок до пластичного состояния, возникновение временного контакта и дальнейшее его разрушение, высокопластичный металл вытесняется из стыка.
  3. Остановка вращения, образование сварного соединения.

   На рисунке представлены схемы  процесса сварки трением: 1 — свариваемые  детали, 2 — вставка, 3— зона сварки. Теплота может выделяться при вращении одной детали относительно другой (схема а) или вставки между деталями (схемы б и в), при возвратно-поступательном движении деталей в плоскости стыка с относительно малыми амплитудами Д и при звуковой частоте (схема г). В процессе вращения детали прижимаются друг к другу постоянным или возрастающим давлением Р. Сварка завершается осадкой и быстрым прекращением вращения.

  Разновидностью  сварки трением можно назвать  инерционную сварку — вращаемую деталь закрепляют в маховике, маховик раскручивают до определенной скорости, детали соединяют, маховик останавливают.

Точечная сварка

  Точечная  сварка — это один из видов контактной электросварки металлов. При точечной сварке, детали нагреваются электрическим током в месте контакта и сдавливаются (не во всех случаях). А основной тип соединения — нахлесточное сварное соединение, поэтому точечная сварка получила широкое распространение в автомобильной промышленности, при ремонте автомобилей, для изготовления штампованных конструкций.

   На рисунке представлена схема  точечной сварки. Свариваемые изделия 1 собираются внахлестку и усилием Fсв зажимаются между электродами 2, подводящими к месту сварки ток силы до нескольких десятков кА от источника энергии 3. Подается кратковременный импульс тока, в зоне контакта образуется область расплавленного металла 4. Во время нагрева металл пластически деформируется, в результате чего образуется уплотняющий поясок 5, который предохраняет расплавленный металл от выплеска и взаимодействия с атмосферным воздухом. Электроды для точечной сварки изготавливают в основном из меди и ее сплавов.

Электрошлаковая сварка

   Электрошлаковая сварка или сварка под флюсом в основном используют для соединения металлов толщиной более 16 мм, стали, чугуна, алюминия, меди, титана и их сплавов. Данный вид сварки относится  к одним из самых производительных и экономичных. Из преимуществ электрошлаковой сварки можно выделить следующие: сварка за один проход металла практически любой толщины, сварка выполняется без снятия фасок кромок, для сварки можно использовать один или несколько электродов.

Информация о работе Литейные свойства сплавов