Физиология с основами анатомии

Автор работы: Пользователь скрыл имя, 05 Октября 2011 в 14:40, контрольная работа

Описание работы

строение тонкого кишечника. Состав и свойства кишечного сока, регуляция его секреции. Полостное и пристеночное пищеварение. Моторная деятельность тонкого кишечника и его регуляция.

Тонкая кишка (intestinum tenue) - орган, в котором продолжается превращение пищевых веществ в растворимые соединения. Под действием ферментов кишечного сока, а также сока поджелудочной железы и желчи, белки, жиры и углеводы расщепляются соответственно до аминокислот, жирных кислот и моносахаридов. Эти вещества, а также соли и вода всасываются в кровеносные и лимфатические сосуды и разносятся к органам и тканям. Кишечник выполняет и механическую функцию, проталкивая химус в каудальном направлении. Кроме того, в тонком кишечнике специализированные нейроэндокринные (энтероэндокринные) клетки образуют некоторые гормоны (серотонин, гистамин, гастрин, холецистокинин, секретин и другие).

Файлы: 1 файл

физиол.docx

— 72.67 Кб (Скачать файл)

  Таким образом, в организме имеется опиодная система аналгезии (медиаторы – энкефалин, динорфин, в-эндорфин), влияние которой реализуется с помощью включения тормозных нейронов, и неопиодная, медиаторами которой являются серотонин, норадреналин, адреналин, тормозящие ноцицептивные нейроны.

  Физиологические основы обезболивания, применяемые в клинической практике.

   Местная анестезия – реализуется за счет блокады проведения болевой импульсации периферических нервных волокон и на уровне ноцицепторов. Местная анастезия обычно длится 20-60 мин.; местные анестетики например новокаин блокируют, Na – каналы нервных волокон, что предотвращает возникновение ПД и, естественно, проведение возбуждения (болевой импульсации).

  Общая анестезия – достигается применением (ингаляционно, внутривенно) наркотических препаратов, которые прерывают проведение болевой импульсации преимущественно на подкорковом уровне; при этом используется также опиоиды, активирующие опиатные рецепторы и, соответственно, эндогенную обезболивающую систему.

   Нетрадиционные методы обезболивания – например, с помощью механического или электрического воздействия на биологически активные точки тела (скопление сенсорных рецепторов), а также с помощью специальных игл (иглоукалывание, или акупунктура). Продолжительность аналгезии 20-30 мин. Акупунктурная аналгезия осуществляется с помощью рефлекторного выброса в кровь из гипофиза эндорфинов, которые возвращаются в мозг, связываются с опиатными рецепторами, нарушая синаптическую передачу болевой импульсации в ЦНС. 

II.Краткий программированный контроль:

1.Экскреторная функция обеспечивается выделением пищеварительными железами в полость желудочно-кишечного тракта продуктов обмена (мочевина, аммиак, желчные пигменты), воды, солей тяжелых металлов, лекарственных веществ, которые затем удаляются из организма. В составе слюны могут выделяться некоторые продукты обмена, такие как мочевина, мочевая кислота, лекарственные вещества (хинин, стрихнин), а также вещества, поступившие в организм (соли ртути, свинца, алкоголь).

Защитная функция. Слюна обладает бактерицидным действием  благодаря содержанию лизоцима. Муцин  способен нейтрализовать кислоты и  щелочи. В слюне находится большое  количество иммуноглобулинов, что защищает организм от патогенной микрофлоры. В  слюне обнаружены вещества, относящиеся  к системе свертывания крови: факторы свертывания крови, обеспечивающие местный гемостаз; вещества, препятствующие свертыванию крови и обладающие фибринолитической активностью; вещество, стабилизирующее фибрин. Слюна защищает слизистую оболочку полости рта от пересыхания.

2. Секретин и холецистокинин действуют, потенцируя друг друга, попадая в кровь из S-клеток (секретин) и I- клеток (холецистокинин) слизистой оболочки двенадцатиперстной кишки. Секретин и холецистокинин - панкреозимин угнетают желудочную моторику. Под влиянием жиров тормозится желудочная моторика и эвакуация. Секретин является блокатором продукции соляной кислоты париетальными клетками желудка.

 Основой эффект, вызываемый секретином, — стимуляция продукции эпителием желчных, панкреатических протоков и бруннеровских желёз бикарбонатов, обеспечивая, таким образом, до 80 % секреции бикарбонатов в ответ на поступление пищи. Этот эффект опосредован через секрецию холецистокинина и это приводит к увеличению продукции желчи, стимулирования сокращений желчного пузыря и кишечника и увеличению секреции кишечного сока. В органах желудочно-кишечного тракта холецистокинин продуцируется I-клетками двенадцатиперстной и тощей кишок. Кроме того, холецистокинин обнаружен в панкреатических островках и различных кишечных нейронах. Стимуляторами секреции холецистокинина являются поступающие в тонкую кишку из желудка в составе химуса белки, жиры, особенно с наличием жирных кислот с длинной цепью (жареные продукты), составные компоненты желчегонных трав (алкалоиды, протопин, сангвинарин, эфирные масла и др.), кислоты (но не углеводы). Также стимулятором выделения холецистокинина является гастрин-рилизинг пептид. 

Холецистокинин стимулирует расслабление сфинктера Одди; увеличивает ток печёночной желчи; повышает панкреатическую секрецию; снижает давление в билиарной системе: вызывает сокращение привратника желудка, что тормозит перемещение переваренной пищи в двенадцатиперстную кишку. Холецистокинин является блокатором секреции соляной кислоты париетальными клетками желудка.

3. Почки, регулируя реабсорбцию и секрецию различных ионов в почечных канальцах, поддерживают их необходимую концентрацию в крови.

Реабсорбция натрия регулируется альдостероном и натрийуретическим гормоном, вырабатывающимся в предсердии. Альдостерон усиливает реабсорбцию натрия в дистальных отделах канальцев и собирательных трубочках. Секреция альдостерона увеличивается при снижении концентрации ионов натрия в плазме крови и при уменьшении объема циркулирующей крови. Натрийуретический гормон угнетает реабсорбцию натрия и усиливает его выведение. Выработка натрийуретического гормона возрастает при увеличении объема циркулирующей крови и объема внеклеточной жидкости в организме.

Концентрация  калия в крови поддерживается за счет регуляции его секреции. Альдостерон усиливает секрецию калия в дистальном отделе канальцев  и собирательных трубочках. Инсулин  уменьшает выделение калия, увеличивая его концентрацию в крови, при  алкалозе выделение калия увеличивается. При ацидозе - уменьшается.

Паратгормон паращитовидных желез увеличивает реабсорбцию кальция в почечных канальцах и высвобождение кальция из костей, что приводит к повышению его концентрации в крови. Гормон щитовидной железы тиреокальцитонин увеличивает выделение кальция почками и способствует переходу кальция в кости, что снижает концентрацию кальция в крови. В почках образуется активная форма витамина D, который участвует в регуляции обмена кальция.

Почки регулируют кислотно-щелочное равновесие, выделяя  кислую или щелочную мочу. Выделение  кислой мочи снижает общее количество кислых продуктов во внеклеточной жидкости, как и выделение оснований снижает их содержание в жидких средах организма.

В целом механизм, благодаря которому почки выделяют кислую или щелочную мочу, заключается в следующем: в просвет канальцев путем фильтрации непрерывно поступает большое количество ионов НСО3, выделение которых в конечную мочу удаляет основания из плазмы. Эпителиоциты выделяют в просвет канальцев также большое количество ионов Н+, таким образом удаляя их из крови. Если количество выделенных ионов Н+ превысит число ионов бикарбоната, попавших в первичную мочу, внеклеточная жидкость в сумме потеряет больше кислых продуктов.

И наоборот, если количество ионов НСО3, попавших в  просвет канальца, превысит секрецию протонов, в сумме возникнет дефицит  оснований.

 Организм в сутки производит около 80 мэкв нелетучих кислот, источником которых главным образом является белковый метаболизм. Эти кислоты называют нелетучими, поскольку они, как Н2СО3, не способны выделяться легкими. Основной путь выведения этих кислот из организма состоит в выделении с мочой. Почки должны также препятствовать потере бикарбонатов с мочой. Выполнение этой задачи, с количественной точки зрения, более важно, чем выделение нелетучих кислот.

Ежедневно почки  профильтровывают около 4320 мэкв бикарбоната (180 л/сут х 24 мэкв/л); в норме почти все это количество реабсорбируется канальцами, сохраняя таким образом главную буферную систему внеклеточной жидкости.

Далее будет  рассмотрен вопрос о том, как реабсорбция бикарбоната и выделение протонов сопряжены с канальцевой секрецией ионов Н+. Поскольку бикарбонаты перед реабсорбцией связываются с протонами, образуя Н2СО3, необходимый объем секреции протонов в просвет канальцев должен составлять 4320 мэкв/сут.

Для освобождения организма от нелетучих кислот в  мочу также должно быть выделено дополнительно 80 мэкв ионов Н+. Таким образом, в общей сложности секреция протонов в просвет канальцев составляет 4400 мэкв/сут.

При снижении концентрации ионов Н+ во внеклеточной жидкости (при алкалозе) почки теряют способность к реабсорбции бикарбонатов, прошедших через почечный фильтр; его выделение, таким образом, возрастает. Поскольку НСО3 в норме нейтрализует протоны во внеклеточной жидкости, такая потеря бикарбонатов равноценна добавлению ионов Н+ во внеклеточную жидкость. Следовательно, при алкалозе выведение НСО3 способствует приведению содержания протонов во внеклеточной жидкости к норме.

При ацидозе  почки не выделяют бикарбонаты в  мочу вследствие их полной реабсорбции из первичной мочи во внеклеточную жидкость. Происходит реабсорбция и новых ионов бикарбоната, образованных почками. В результате концентрация ионов Н+ во внеклеточной жидкости возвращается к норме.

Таким образом, почки регулируют содержание ионов  Н+ внеклеточной жидкости благодаря  трем основным механизмам: (1) секреции ионов H+; (2) реабсорбции бикарбонатов, попавших в первичную мочу, (3) образования новых ионов бикарбоната. Все эти процессы выполняются благодаря деятельности одной и той же системы, работа которой обсуждается в следующих разделах. 

4. Через оптическую систему проходят не все лучи, которые исходят от предмета. Ограничение размера пучков лучей – результат совместного действия всех имеющихся в оптической системе диафрагм. Однако можно выделить одну (наименьшую) диафрагму, и считать, что остальные не ограничивают ход лучей. Такая диафрагма называется апертурной.

Апертурная диафрагма – это диафрагма, которая ограничивает размер осевого пучка, то есть пучка, идущего из осевой точки предмета.

Выходной зрачок – это изображение апертурной диафрагмы в пространстве изображений, сформированное последующей частью оптической системы в прямом ходе лучей.

Чтобы определить, какая из диафрагм оптической системы  является апертурной, надо найти изображение всех диафрагм в пространстве предметов в обратном ходе лучей. Апертурная диафрагма – это диафрагма, изображение которой видно под наименьшим углом из осевой точки предмета. Если предмет находится на бесконечности, то апертурная диафрагма – это диафрагма, изображение которой имеет наименьшие линейные размеры.

Апертура определяет размер пучка лучей, входящего или  выходящего из оптической системы. Передняя (задняя) апертура – это размер входного (выходного) зрачка. Числовая апертура – это произведение размера зрачка на показатель преломления.

Еще одной важной характеристикой оптической системы  является положение входного (выходного) зрачка. Так как изображение чаще всего воспринимается или последующей оптической системой, или глазом, необходимо, чтобы выходной зрачок оптической системы совпадал с входным зрачком прибора или глаза по положению и размерам.

Для удаленного предмета или изображения входной (выходной) зрачок находится близко к оптической системе, поэтому положение  зрачка ( или ) измеряется относительно оптической системы в обратных миллиметрах, то есть в килодиоптриях.

Для близкого предмета или изображения имеет значение положение зрачка относительно предмета или изображения, кроме того, расстояния от зрачка до прибора могут быть бесконечно велики (при телецентрическом ходе лучей), поэтому положение зрачка ( или ) измеряется в миллиметрах от предмета (изображения).

В системах, формирующих  изображение дальнего типа, приемником изображения, как правило, является глаз. Для систем, работающих с глазом, выходной зрачок должен быть по размеру  и положению согласован со зрачком  глаза. При высокой освещенности объекта (в лабораторных приборах) диаметр  зрачка глаза можно принять за равный 2 мм. Для приборов, работающих в условиях недостаточной освещенности, диаметр зрачка глаза считают  равным 4 – 6 мм.

Глаз человека представляет собой сложную оптическую систему, которая состоит из роговицы, влаги передней камеры, хрусталика и стекловидного тела. Преломляющая сила глаза зависит от величины радиусов кривизны передней поверхности роговицы, передней и задней поверхностей хрусталика, расстояний между ними и показателей  преломления роговицы, хрусталика, водянистой влаги и стекловидного  тела. Оптическую силу задней поверхности  роговицы не учитывают, поскольку показатели преломления ткани роговицы и  влаги передней камеры одинаковы (как  известно, преломление лучей возможно лишь на границе сред с различными коэффициентами преломления).

5. ысшая нервная деятельность – это процессы, происходящие в высших отделах центральной нервной системы животных и человека. К этим процессам относят условных и безусловных рефлексов, а также "высших" психических функций, которые обеспечивают адекватное поведение животных и человека в изменяющихся окружающих природных и социальных условиях. Высшую нервную деятельность центральной нервной системы следует отличать от работы центральной нервной системы по синхронизации работы различных частей организма между собой. Высшую нервную деятельность связывают с нейрофизиологическими процессами, проходящими в коре больших полушарий головного мозга и ближайшей к ней подкорке. 

Информация о работе Физиология с основами анатомии