Автор работы: Пользователь скрыл имя, 07 Января 2015 в 12:34, курсовая работа
Цель исследования рассмотрение активизации познавательной деятельности младших школьников посредством использования внеклассной работы, выступающей как условие успешности обучения на уроках математики;
Задачи исследования:
Раскрыть сущность понятия «познавательная деятельность»;
Введение……………………………………………………………
3
Глава 1
Пути и методы активизации познавательной деятельности младших школьников…………………………………………….
5
1.1
Сущность понятия «познавательная деятельность»…………….
5
1.2
Методы и приемы активизации учебно-познавательной деятельности младших школьников…………………………….
6
1.3
Уровни активизации познавательной деятельности……………
10
Глава 2
Использованое внеклассной работы на уроках математики в начальной школе…………………………………………………..
12
2.1
Значение внеклассной работы……………………………………
12
2.2
Виды и формы внеклассной работы……………………………..
13
2.3
Методика организации и проведения внеклассной работы по математике в начальной школе ………………………………….
15
Заключение…………………………………………………………
53
Список использованной литературы…………
Всем учиться на «отлично», никогда не унывать!
Подводятся итоги соревнования, награждается победившая команда. «Лучший пилот», победитель в индивидуальном зачете выявляется после проверки учителем работ. На следующем занятии или на одном из уроков он объявляется и награждается тоже.
Внеклассные занятия по математике могут проводиться и вне учебного материала, то есть не зависеть от имеющихся у детей на данный момент учебных умений и навыков. Интересными внеклассные занятия может сделать исторический материал, положенный в их основу. Известный французский математик, философ, физик, Ж. А. Пуанкаре отмечал, что при выборе методов преподавания история науки должна быть главным проводником, ибо всякое обучение становится ярче, богаче от каждого соприкосновения с историей изучаемого предмета [10, с. 65]. Чтобы учащиеся проявляли повышенный познавательный интерес к математике, чтобы она не казалась им скучной, сухой, труднопреодолимой наукой, целесообразно в систему внеклассных занятий включать элементы истории математики. Осуществление принципа исторического подхода дает возможность уяснить, что процесс познания есть исторический процесс, понять связь теории с практикой, увидеть, что математика развивалась на основе практики и что критерием достоверности теории является практика.
Ознакомление учащихся с историей математики как раз и надо проводить на внеклассных занятиях, которые будут способствовать развитию познавательных интересов к математике; углублению понимания изучаемого фактического материала; расширению кругозора учащихся, повышению их общей культуры.
Необходимо начинать такую работу с 2 класса и проводить ее систематически. Содержание, объем и стиль изложения вопросов из истории математики должны соответствовать возрастным возможностям учащихся. Форма сообщения сведений может быть различной: это и краткая беседа, и лаконичная справка, это решение задачи и экскурс, доклад одного из учеников или театральная миниатюра, показ фрагмента диафильма или разъяснение рисунка.
Опираясь на психологические исследования проблемы обучения и механизмы умственного развития младших школьников, Л. С. Выготский отмечает, что не следует бояться преподнести ученикам что-то более сложное, взятое из будущего материала. Им было установлено, что умственное развитие осуществляется успешнее, если обучение строится не только на достигнутом уровне развития учеников, но и на механизмах познания, которые еще не созрели, но могут функционировать. «Только то обучение является хорошим, которое забегает вперед развитию» [17, с. 449], оно придает уроку развивающий характер и вызывает активную умственную деятельность учащихся.
Тематика таких внеклассных занятий должна соответствовать порядку ознакомления школьников с различными математическими фактами и понятиями в школьном курсе. Так, после прохождения темы «Меры длины», на внеклассных занятиях происходит углубление знаний по теме в процессе проведения бесед и практических упражнений по измерению длины отрезков старинными способами. В доступной форме осуществляется знакомство детей с происхождением различных единиц измерения.
Аналогичная работа возможна при изучении темы «Меры времени». Краткие сведения о происхождении часов, некоторых единиц измерения времени, о зарождении календаря и путях его совершенствования, можно на занятии и раскрыть взаимосвязь мер времени с природными явлениями.
Не менее интересные сведения могут получить школьники и в ходе изучения темы «Многозначные числа». Беседы о том, как люди научились вести счет, записывать числа, выполнять с ними операции обязательно вызовут интерес у детей.
Таким образом, создается возможность систематически сочетать изучаемый раздел программы по математике с внеклассной работой, углублять знания учащихся, развивать и их математические способности.
При этом не следует требовать от детей запоминания исторических сведений. Важно, чтобы они поняли, что математика связана с жизнью, а понятия, которыми мы оперируем, являются отражением предметов и явлений реального мира.
Приведем конспект одного из таких занятий, главная роль в котором принадлежит не учителю, а ученикам-актерам. К подобному занятию следует заранее подготовиться, несколько раз прорепетировать, продумать наглядность. Это не так-то просто, зато эффект от такого занятия будет гораздо больший, чем если бы учитель просто излагал исторические факты. На занятие даже можно пригласить родителей, это придаст ему элемент торжественности и большей значимости.
Уже в 1 классе при изучении математики вы по-разному записываете одни и те же числа. Так, выполняя действия, сравнивая выражения, числа один, два, три обозначаете знаками: 1, 2, 3. Но записывая кратко задачу, перечисляя пункты плана, вы эти же числа записываете иначе:,,. Почему одно и то же число мы записываем по-разному?
Это происходит потому, что до сегодняшних дней, наряду с индийской системой записи чисел, люди пользуются римской нумерацией. На этом занятии мы узнаем о том, какие римские цифры существуют и как ими пользоваться для обозначения чисел. А расскажут нам об этом герои книги В.А. Левшина «Три дня в Карликании».
Итак, Сева, Таня и Олег путешествуют по Карликании. Побывав в стране Арабелла, где живут Нулик и другие цифры, они отправились в Рим. Сопровождает их по этой стране переводчик.
Выходят дети-актеры. На груди у каждого кружок из бумаги, на котором написана первая буква имени его героя.
После многих церемоний, сопровождающих знакомство, Сева, наконец, задал самый главный вопрос:
Сева: Нет ли у вас Нулика?
Переводчик: Повторите, пожалуйста, еще раз. Я не расслышал.
Сева: Я спрашиваю, нет ли у вас Нулика?
Переводчик: Какого Нулика? Вы, наверное говорите о том маленьком кружочке, который неизвестно для чего живет в Арабелле и ровно ничего из себя не представляет? Нет, нет, у нас нет нуликов! Они совершенно бесполезны. Кроме того, никогда не разберешь, где у них начало, а где конец. Мы, римляне, признаем только прямые линии. Это очень удобно. Сразу видно, где ноги, а где голова.
Таня: Как же вы составляете числа, например, десять, сто, если у вас нет нуликов?
Переводчик: Все это можно изобразить одними палочками.
Олег: Даже большое число?
Переводчик: Даже большое. Смотрите.
(Выходят ученики, на груди которых нарисованы палочки. Переводчик хлопает в ладоши, дети встали по стойке «Смирно» на равном расстоянии друг от друга, учитель в это время читает авторский текст:
Переводчик хлопнул в ладоши и стоявшие на площади спичечные воины мгновенно образовали несколько правильных рядов.)
Сева: Как физкультурники на стадионе.
Переводчик: Каждый из этих воинов единица. Ничего более. Но из этих единиц я могу составить все, что угодно. Сейчас я заставлю их превратиться в двойки. Раз, два!
(Дети перестраиваются парами. Учитель: На площади произошла перегруппировка. Все спички расположились парами)
Переводчик: Теперь вы видите перед собой число два. Прошу дальше. Раз, два, три!
Олег: Не успели мы глазом моргнуть, как в каждом ряду стало по три спички.
(Дети перестраиваются по трое)
Переводчик: Вот вам и число три!
Таня: А четыре?
Переводчик: Сначала познакомьтесь с нашей пятеркой.
(Дети встают по двое. Через некоторое время из-за них выходят дети, на груди у которых ¾ римская. Учитель: Спички опять перегруппировались по двое, вплотную придвинулись друг к другу и откинулись в разные стороны.)
Олег: Мы увидели фигуру, которую у нас обычно называют галочкой.
Переводчик: Теперь нетрудно получить и четверку, и шестерку. Поставим палочку слева от пятерки, получим четыре, поставим ее справа ¾ получим шесть.
(дети показывают называемые числа и записывают их на доске)
Таня: Значит, все дело в том, чтобы из пятерки либо вычесть единицу, либо прибавить. Если единица слева, значит, ее надо вычесть, если справа ¾ надо прибавить.
Олег: Понимаю! Если приставить к пятерке справа две палочки, будет семь, а три палочки ¾ восемь.
Переводчик: Мы так и поступаем. Видите, как просто.
Сева: Тогда я знаю, как получить девятку.
Переводчик: Уж не собираетесь ли вы для этого прибавить четыре палочки? Эту ошибку делают многие. Между тем девятку у нас изображают по-другому. Ведь она стоит ближе к десятке, чем к пятерке. Значит, проще поставить единицу слева от десятки… Вот вам и девятка!
Сева: Но как у вас изображают десятку?
(Учитель: Переводчик подал знак, и птички-спички превратились в ловких акробатов. Одни пятерки перекинулись и стали кверху ногами, другие ловко вскочили на них. Выходят дети, на груди которых нарисованы десятки.)
Олег: Здорово!
Переводчик: Красиво и просто! А дальше наше обычное правило: единица слева ¾ девять, единица справа ¾ одиннадцать. Потом двенадцать, тринадцать, четырнадцать и так далее.
(все названные числа учитель записывает на доске)
Затем две десятки ¾ двадцать, три десятки ¾ тридцать…
Таня: Четыре десятки ¾ сорок.
Переводчик: Стоп! Я забыл вам сообщить, что, кроме палочек, у нас имеются четыре латинские буквы: M, D, С и L. М ¾ это тысяча и, как самая большая цифра, наш предводитель. Его помощники: D ¾ пятьсот, С ¾ сто и L ¾ пятьдесят. Итак, сорок ¾ это пятьдесят минус десять. Значит изображается это так…
(записывает на доске)
А теперь, ребята, давайте вместе с Севой, Таней и Олегом поупражняемся в записи таких чисел.
Проведение кружковых занятий в значительной степени близко к урокам. Сходство классных и внеклассных занятий определяется организационной формой коллективной учебной работы, когда учитель ведет занятие с группой учащихся, проводит необходимые пояснения, спрашивает учащихся и тому подобное. При этом желательно учащимся предоставлять больше инициативы, давать им больше возможностей высказывать собственные суждения по обсуждаемому вопросу. Надо учесть, что иногда ошибочные рассуждения и их опровержения, тренировка в “разговоре” на математические темы дает учащимся больше пользы, чем изложение учителем готовых решений. Ребята нуждаются в развитии собственной инициативы, своего личного подхода к решению данной задачи. Важно поощрять различные способы решения задач, не стремиться навязывать свое решение. Вместе с тем, учителю необходимо следить за тем, чтобы тематика занятий и методы работы в кружке были разнообразной. Ценность содержания внеклассной работы и определяется разнообразием тематики и методов решения задач, новизной по отношению к содержанию урока математики в классе. Но основной отличительной особенностью кружковой работы является принцип добровольности вовлечения в работу.
На кружковых занятиях школьников обязательно надо учить ориентироваться в незнакомых ситуациях и областях, решать задачи на незнакомую фабулу, с непривычным для них математическим содержанием. Темп проведения кружковых занятий должен постепенно возрастать. Нецелесообразно на занятиях кружка проводить систематическое повторение ранее пройденных вопросов, так как основная задача кружковой работы - развитие творческого подхода, повышение уровня математической подготовки, но не сообщение учащимся определенных математических фактов, подлежащих обязательному усвоению. Учитель на занятиях не должен стеснять инициативы и находчивости учащихся в поисках решения задачи, облегчения вычислений. Кроме того, для занятий необходимо подбирать такие задания, которые представляют собой развитие типовых задач, предусмотренных или непредусмотренных программой.
К занятию учителю необходимо готовиться. Следует обдумывать план каждого занятия кружка, учитывая разнообразие методов работы с учащимися. Включать в этот план отдельные фрагменты бесед учителя, рассказов, выступлений учащихся с короткими сообщениями по истории математической теории, биографии ученых, интересными решениями задач, сообщениями о самостоятельных “исследованиях” и так далее. Это поможет обобщению опыта внеклассной работы, систематическому улучшению ее организации и методики.
Учителю, решившему создать на базе своего класса математический кружок, не обязательно продумывать методику работы самому. В этом могут помочь методические пособия, разработанные различными авторами. Однако, как правило, в них описана система работы лишь на один учебный год. Учителю в таком случае трудно обеспечить преемственность кружковых занятий. Одним из немногих авторов, решивших эту проблему, является В. П. Труднев. Мы представляем примерное тематическое планирование кружковых занятий с 1 по 3 класс.
1класс
Занятие 1. 1. Занимательная задача на сложение. 2. Упражнение на проверку знания нумерации. 3. Загадки. 4. Игра «Веселый счет» (в пределах 20).
Занятие 2. 1. Упражнения в измерении на глаз. 2. Задача в стихах. 3. Задача-смекалка. 4. Задача-шутка. 5. Загадки. 6. Игра «Задумай число» (в основе ¾ а + х = в, х + а = в).
Занятие 3. 1. Упражнение на сравнение фигур. 2. Ребусы. 3. Задача в стихах. 4. Задача-смекалка. 5. Загадка. 6. Игра «на 5 больше и на 5 меньше».
Занятие 4. 1. Игра «Задумай число» (в основе вычитание числа из суммы вида: (х + а) – х =а). 2. Задача в стихах на разностное сравнение. 3. Задача-смекалка. 4. Занимательный квадрат. 5. Задача-шутка. 6. Загадка. 7. Игра «Узнай, на какой парте флажок» (на нахождение уменьшаемого).