Автор работы: Пользователь скрыл имя, 10 Сентября 2011 в 17:17, курсовая работа
В данной курсовой работе будет рассмотрено тождественные преобразования показательной и логарифмической функции, рассмотрена методика преподавания их в школьном курсе алгебры и начала анализа.
Первая глава данной работы описывает методику преподавания тождественных преобразований в школьном курсе математики, так же включает программу по математике в курсе «Алгебры и начала анализа» с изучением показательной и логарифмической функции.
Введение……………………………………………………………………2
Глава 1. Тождественные преобразования и методика преподавания в школьном курсе алгебры и начала анализа……………………………………..4
§1. Формирование навыков применения конкретных видов преобразований…………………………………………………………………………….4
§2. Особенности организации системы знаний при изучении тождественных преобразований .…….………………………….………..………….5
§3. Программа по математике ……………………………………….11
Глава 2. Тождественные преобразования и вычисления показательных и логарифмических выражений……………………………...…………………13
§1. Обобщение понятия степени……………………………………..13
§2. Показательная функция…………………………………………..15
§3. Логарифмическая функция……………………………………….16
Глава 3. Тождественные преобразования показательных и логарифмических выражений на практике..........................................................................19
Заключение………………………………………………………………..24
Список использованной литературы
График
функции
(рис. 1)
Рис. 1
Эти формулы называют основными свойствами степеней.
Можно
так же заметить, что функция
непрерывна на множестве действительных
чисел.
§3. Логарифмическая функция.
Определение: Логарифмом числа по основанию называется показатель степени, в которую нужно возвести основание . Что бы получить число .
Формулу (где , и ) называют основным логарифмическим тождеством.
При работе с логарифмами применяются следующие их свойства, вытекающие из свойств показательной функции:
При любом ( ) и любых положительных и выполнены равенства:
1.
2.
3.
4.
5. для любого действительного .
Основные свойства логарифмов широко применяются в ходе преобразования выражений, содержащих логарифмы. Например, часто используется формула перехода от одного основания логарифма к другому: .
Пусть – положительное число, не равное 1.
Определение: Функцию, заданную формулой называют логарифмической функцией с основанием .
Перечислим основные свойства логарифмической функции.
1.
Область определения
2.
Область значений
3. Логарифмическая функция на всей области определения возрастает (при ) или убывает (при ).
График
функции
(рис. 2)
Рис. 2
Графики
показательной и
логарифмической
функций, имеющих
одинаковое основание,
симметричны относительно
прямой
(рис. 3).
Рис. 3
Задание 1.
Вычислите:
1.1) ;
1.2) ;
1.3) ;
1.4) ;
1.5)
.
Решение:
1.1) ;
1.2) ;
1.3) ;
1.4)
;
1.5)
.
Ответ:
;
;
;
;
.
Задание 2.
Упростите выражения:
2.1) ;
2.2) ;
2.3) .
Решение:
2.1) ;
2.2)
;
2.3)
Ответ:
;
;
.
Задание 3.
Найдите значение выражения:
3.1) ;
3.2) ;
3.3) ;
3.4) .
Решение:
3.1) ;
3.2) ;
3.3) ;
3.4)
.
Ответ:
;
;
;
.
Задание 4.
Прологарифмируйте по основанию выражение:
4.1) при ;
4.2) при , , .
Решение:
4.1)
;
4.2)
.
Ответ:
;
.
Задание 5.
Найдите , если:
5.1) ;
5.2) .
Решение:
5.1)
;
5.2)
.
Ответ:
;
.
Задание 6.
Известно, что . Найти .
Решение:
.
Ответ:
.
Задание 7.
Решите уравнения:
7.1) ;
7.2) ;
7.3) .
Решение:
7.1)
;
7.2)
, так как , то , получаем, что ;
7.3)
.
Ответ: , ; ; , .
Заключение
В данной курсовой работе по теме «Тождественные преобразования показательных и логарифмических выражений» мною было рассмотрено введение данного материала в обучение в школьном курсе алгебры и начала анализа.
Тема тождественных преобразований, в общем, является одной из часто используемых в вычислениях и решении различных задач. Поэтому о преобразованиях начинают говорить уже с начала средней школы при изучении математики.
Рассмотрела методы формирования навыков у учеников при изучении данного материала. Так же представила программу по математике изучения курса показательной и логарифмической функции в курсе «Алгебры и начала анализа».
В работе были приведены задания, разные по сложности и по содержанию, с использованием тождественных преобразований. Данные задания могут быть использованы для проведения контрольных или самостоятельных работ проверки знаний учащихся.
Курсовая работа, по моему мнению, выполнена в рамках методики преподавания математики в средне образовательных учреждениях и может быть использована как наглядное пособие для учителей школ, а так же для студентов дневного и заочного отделений.
Список использованной
литературы:
Информация о работе Тождественные преобразования показательных и логарифмических выражений