Автор работы: Пользователь скрыл имя, 24 Мая 2010 в 02:22, Не определен
Введение
1.1 Основные понятия теории графов
1.2 Сетевые графики. Порядок и правила построения.
1.3 Нахождение максимального потока в сети
2.1 Задача о нефтепроводе максимальной пропускной способности.
Выводы и рекомендации
Библиографический список.
Содержание
Введение…………………………………………………………
Библиографический
список………………………………………………………………
Современное общество отчасти можно рассматривать как систему сетей, предназначенных для транспортирования, передачи и распределения электроэнергии, товаров и информации. Для решения задач оптимального использования этих систем применяется сетевой анализ. В значительной степени он основан на теории графов. Сетевые модели широко применяются в исследовании операций и могут быть использованы на практике, например, при проектировании вычислительных комплексов, транспортных сетей, телетрансляционных сетей, систем космической связи.
Ни один проект с использованием крупной сети со сложной топологией в настоящее время не обходится без исчерпывающего моделирования будущей сети. Программы, выполняющие эту задачу, достаточно сложны и дороги. Целью моделирования является определение оптимальной топологии, адекватный выбор сетевого оборудования, определение рабочих характеристик сети и возможных этапов будущего развития. Ведь сеть, слишком точно оптимизированная для решений задач текущего момента, может потребовать серьезных переделок в будущем. Так, в данной курсовой работе будут рассмотрены основные модели теории графов, и методы решения сетевых задач на примере задачи о нефтепроводе.
Сетевой моделью (другие названия: сетевой график, сеть) называется экономико-компьютерная модель, отражающая комплекс работ (операций) и событий, связанных с реализацией некоторого проекта (научно-исследовательского, производственного и др.), в их логической и технологической последовательности и связи. Анализ сетевой модели, представленной в графической или табличной (матричной) форме, позволяет более четко выявить взаимосвязи этапов реализации проекта, а также определить наиболее оптимальный порядок выполнения этих этапов в целях, например, сокращения сроков выполнения всего комплекса работ. Таким образом, методы сетевого моделирования относятся к методам принятия оптимальных решений.
Графом называется набор точек, соединенных между собой ребрами (или дугами).
Таким образом, ребро определяется парой вершин. Два ребра, у которых есть общая вершина, называются смежными (или соседними).
Граф
называется ориентированным (или орграфом),
если некоторые ребра имеют
Помимо этого, в теории графов рассматриваются также мультиграфы – это такие графы, в которых могут быть петли (т. е. некоторая вершина соединена сама с собой ребром) или некоторые пары вершины могут быть соединены между собой несколькими ребрами.
Маршрут
в графе – это
Путь в графе (иногда говорят простой путь) – это маршрут без повторения вершин (а значит, и ребер).
Контур – это цикл без повторения вершин, за исключением первой вершины, совпадающей с последней.
Последовательности вершин (рис. 1): 1–2–3–4–2–5 не простой путь, а маршрут; последовательности 1–2–3–4–7–5 и 1–2–5 – простые пути; 1–2–3–4–2–5–6–1 –это цикл (но не контур); 1–2–5–6–1 – это контур. Если имеется некоторый маршрут из вершины t в вершину s, заданный в виде последовательности ребер, которые в этом случае приобрели направление, и если в этот маршрут входит ребро, соединяющее вершины (i, j), то это ребро по отношению к вершине i называют иногда прямой дугой, а по отношению к вершине j – обратной дугой (или обратным ребром).
Граф называется связным, если любые две его вершины можно соединить маршрутом (или путем). На рис. 1 изображен связный граф.
Ребро,
при удалении которого граф перестает
быть связным, иногда называют мостом
или перешейком.
Рисунок
1 – Связный граф
Степень вершины – это число ребер, входящих в эту вершину. Вершина называется висячей, если ее степень равна единице.
Лемма 1. Если степень всех вершин в графе больше или равна двум, то граф обязательно содержит контур.
Доказательство. Действительно, выйдя из некоторой вершины и войдя в другую, всегда можно выйти из нее по другому ребру , так как степень вершины больше или равна двум. Выйти из вершины по новому ребру невозможно только в том случае, если эта вершина уже встречалась, а это означает, что можно выделить контур из вершин этого графа.
Сетевой моделью называется графическое изображение процессов, выполнение которых приводит к достижению одной или нескольких поставленных целей, с указанием установленных взаимосвязей между этими процессами. Сетевой график представляет собой сетевую модель с расчетными временными параметрами.
Всякий намеченный комплекс работ, необходимых для достижения некоторой цели, называют проектом. Проект (или комплекс работ) подразделяется на отдельные работы. Каждая отдельная работа, входящая в комплекс (проект), требует затрат времени. Некоторые работы могут выполняться только в определенном порядке. При выполнении комплекса работ всегда можно выделить ряд событий, то есть итогов какой-то деятельности, позволяющих приступить к выполнению следующих работ. Если каждому событию поставить в соответствие вершину графа, а каждой работе — ориентированное ребро, то получится некоторый граф. Он будет отражать последовательность выполнения отдельных работ и наступление событий в едином комплексе. Если над ребрами проставить время, необходимое для завершения соответствующей работы, то получится сеть. Изображение такой сети называют сетевым графиком. Сетевой график состоит из двух типов основных элементов: работ и событий. Работа представляет собой выполнение некоторого мероприятия (например, погрузка боезапаса или переход корабля в пункт базирования). Этот элемент сетевого графика связан с затратой времен и расходом ресурсов. Поэтому работа всегда имеет начало и конец.
На сетевом графике работа изображается стрелкой, над которой проставляется ее продолжительность или затрачиваемые ресурсы, или то и другое одновременно. Работа, отражающая только зависимость одного мероприятия от другого, называется фиктивной работой. Такая работа имеет нулевую продолжительность (или нулевой расход ресурсов) и обозначается пунктирной стрелкой.
Начальная и конечная точки работы, то есть начало и окончание некоторого мероприятия, называются событиями. Следовательно, событие, в отличие от работы, не является процессом и не сопровождается никакими затратами времени или ресурсов.
Событие, следующее непосредственно за данной работой, называется последующим событием по отношению к рассматриваемой работе. Событие, непосредственно предшествующее рассматриваемой работе, называется предшествующим.
Наименования "предшествующий" и "последующий" относятся также и к работам. Каждая входящая в данное событие работа считается предшествующей каждой выходящей работе, и наоборот, каждая выходящая работа считается последующей для каждой входящей.
Из определения отношения "предшествующий—последующий" вытекают свойства сетевого графика.
Во-первых, ни одно событие не может произойти до тех пор, пока не будут закончены все входящие в него работы. Во-вторых, ни одна работа, выходящая из данного события, не может начаться до тех пор, пока не произойдет данное событие. И, наконец, ни одна последующая работа не может начаться раньше, чем будут закончены все предшествующие ей.
Событие обозначается кружком с цифрой внутри, определяющей его номер.
Из всех событий, входящих в планируемый процесс, можно выделить два специфических — событие начала процесса, получившее название исходного события, которому присваивается нулевой номер, и событие конца процесса ( завершающее событие), которому присваивается последний номер. Остальные события нумеруются так, чтобы номер предыдущего события был меньше номера последующего.
Для нумерации событий применяется следующий способ. Вычеркиваются все работы, выходящие из события с номером "0", и просматриваются все события, в которых оканчиваются эти вычеркнутые работы. Среди просмотренных находятся события, которые не имеют входящих в них работ (за исключением уже вычеркнутых). Они называются событиями первого ранга и обозначаются (вообще, в произвольном порядке) числами натурального ряда, начиная с единицы (на рисунке 2 это событие 1). Затем вычеркиваются все работы, выходящие из событий первого ранга, и среди них находятся события, не имеющие входящих работ (кроме вычеркнутых). Это — события второго ранга, которые нумеруются следующими числами натурального ряда (например, 2 и 3 на рисунке 2). Проделав таким способом шаг, определяют события -го ранга , и просматривая события, в которых эти работы заканчиваются, выбирают события, не имеющие ни одной входящей в них работы (кроме вычеркнутых). Это события k-го ранга, и нумеруются они последовательными числами натурального ряда, начиная с наименьшего, еще не использованного числа при предыдущей нумерации на -м шаге.
Рисунок 2 – Пример
сетевого графика
Сетевой график содержит конечное число событий. Поскольку в процессе вычеркивания движение осуществляется в направлении стрелок (работ), никакое предшествующее событие не может получить номер, больший, чем любое последующее. Всегда найдется хотя бы одно событие соответствующего ранга, и все события получат номера за конечное число шагов.
Работа обычно кодируется номерами событий, между которыми они заключены, то есть парой , где i— номер предшествующего события, j— номер последующего события.
В одно и то же событие могут входить (выходить) одна или несколько работ. Поэтому свершение события зависит от завершения самой длительной из всех входящих в него работ.
Взаимосвязь между работами определяется тем, что начало последующей работы обусловлено окончанием предыдущей. Отсюда следует, что нет работ, не связанных началом и окончанием с другими работами через события.
Последовательные работы и события формируют цепочки (пути), которые ведут от исходного события сетевого графика к завершающему. Например, путь 0®1®2®3®4®5®6®7 сетевого графика, показанного на рисунке 2, включает в себя события 0,1,2,3,4,5,6,7 и работы (0-1), (1-2), (2-5), (5-6), (6-7).
На основании изложенного можно сказать, что ранг события — это максимальное число отдельных работ, входящих в какой-либо из путей, ведущих из нулевого (исходного) события в данное. Так, события первого ранга не имеют путей, состоящих более чем из одной работы, ведущих в них из 0 (например, событие 1 на рисунке 2). События второго ранга связаны с 0 путями, которые состоят не более чем из двух работ, причем для каждого события второго ранга хоть один такой путь обязательно существует. Например, на рисунке 2 событие 4 — событие третьего ранга, так как пути, ведущие в это событие из 0, включают только три работы — (0-1) (1-3)и (3-4) или (0-1),(1-2)и (2-4).
Построенный таким образом сетевой график в терминах теории графов представляет собой направленный граф.