Автор работы: Пользователь скрыл имя, 22 Марта 2011 в 10:51, реферат
В данной работе мы обратим внимание прежде всего на подходы к определению категории «вероятность». Второй интересующий нас момент – теоремы сложения и умножения вероятностей.
ВВЕДЕНИЕ………………………………………………………………………3
1. Определение вероятности…………………………………………………….4
1.1 Классическое определение………………………………………………….5
1.2 Геометрическое определе-ние……………………………………………….7
2. Теорема сложения вероятно-стей…………………………………………….9
3. Теорема умножения вероятно-стей………………………………………….12
4. Случайные события………………………………………………………….15
4.1 Случайные события и величины, их основные характеристики ……….15
4. Взаимодействие случайных событий ……………………………………….17
4.3 Схемы случайных событий и законы распределения случайных вели-чин……………………………………………………………………………….23
ЗАКЛЮЧЕНИЕ………………………………………………………………….27
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ…………………………….28
Доказательство.
Для простоты будем также опираться на классическое определение вероятности. Пусть множество Ω конечно и состоит из n равновозможных, попарно несовместных исходов испытания или опыта, = n; событие А состоит из m исходов, = m; m ≤ n; событие В – из k исходов, = k, k ≤ n; событие АВ – из r исходов, = r, r ≤ n, r ≤ k, r ≤ m, т. е. событиям А, В и АВ будут благоприятствовать m, k и r равновозможных исходов соответственно. Найдем условную вероятность события А при условии, что событие В произошло: Р(А/В)=r/k.
Поделим
числитель и знаменатель этой
дроби на n.
Отсюда Р(АВ)=Р(В)Р(А/В).
В
наших рассуждениях мы могли поменять
события А и В. Меняя ролями
А и В, получим Р(АВ)=Р(А)Р(В/А). Таким образом,
равенство (1.7) доказано. Теорема умножения
распространяется и на большее, чем два
число сомножителей
(1.8)
Пример 5. На станции отправления имеется 8 заказов на отправку товара: пять – внутри страны, а три – на экспорт. Какова вероятность того, что два выбранных наугад заказа окажутся предназначенными для потребления внутри страны?
Решение. Используем для решения задачи формулу умножения вероятностей (1.7) и непосредственный подсчет по классическому определению, т. е. решим ее двумя способами.
1-й
способ: событие А = {первый взятый наугад
заказ – внутри страны}, В = {второй, тоже
взятый наугад заказ – внутри страны}.
Нам необходимо найти вероятность Р(АВ),
поэтому по формуле (1.7)
Р(АВ)=Р(А)Р(В/А)=(5/8)(
2-й способ: событие А ={два выбранных
наугад заказа – внутри страны}. По
классическому определению
.
4. Случайные
события
4.1
Случайные события и величины, их основные
характеристики
При
анализе больших систем наполнителем
каналов связи между
продукция, т. е. реальные, физически ощутимые предметы с заранее заданным способом их количественного и качественного описания;
деньги, с единственным способом описания - суммой;
информация,
в виде сообщений о событиях в
системе и значениях
Начнем с того, что обратим внимание на тесную (системную!) связь показателей продукции и денег с информацией об этих показателях. Если рассматривать некоторую физическую величину, скажем - количество проданных за день образцов продукции, то сведения об этой величине после продажи могут быть получены без проблем и достаточно точно или достоверно. Но, уже должно быть ясно, что при системном анализе нас куда больше интересует будущее - а сколько этой продукции будет продано за день? Этот вопрос совсем не праздный - наша цель управлять, а по образному выражению "управлять - значит предвидеть".
Итак,
без предварительной
Для случайных величин (далее - СВ) приходится использовать особые, статистические методы их описания. В зависимости от типа самой СВ - дискретная или непрерывная это делается по разному.
Дискретное
описание заключается в том, что
указываются все возможные
Можно доказать (и это давно сделано), что при увеличении числа наблюдений в определенных условиях за значениями некоторой дискретной величины частота повторений данного значения будет все больше приближаться к некоторому фиксированному значению - которое и есть вероятность этого значения.
К понятию вероятности значения дискретной СВ можно подойти и иным путем - через случайные события. Это наиболее простое понятие в теории вероятностей и математической статистике - событие с вероятностью 0.5 или 50% в 50 случаях из 100 может произойти или не произойти, если же его вероятность более 0.5 - оно чаще происходит, чем не происходит. События с вероятностью 1 называют достоверными, а с вероятностью 0 - невозможными.
Отсюда простое правило: для случайного события X вероятности P(X) (событие происходит) и P(X) (событие не происходит), в сумме для простого события дают 1.
Если мы наблюдаем за сложным событием - например, выпадением чисел 1..6 на верхней грани игральной кости, то можно считать, что такое событие имеет множество исходов и для каждого из них вероятность составляет 1/6 при симметрии кости.
Если же кость несимметрична, то вероятности отдельных чисел будут разными, но сумма их равна 1.
Стоит только рассматривать итог бросания кости как дискретную случайную величину и мы придем к понятию распределения вероятностей такой величины.
Пусть в результате достаточно большого числа наблюдений за игрой с помощью одной и той же кости мы получили следующие данные:
Таблица 1
Грани | 1 | 2 | 3 | 4 | 5 | 6 | Итого |
Наблюдения | 140 | 80 | 200 | 400 | 100 | 80 | 1000 |
Подобную таблицу наблюдений за СВ часто называют выборочным распределением, а соответствующую ей картинку (диаграмму) - гистограммой.
Рис.
1.
Какую же информацию несет такая табличка или соответствующая ей гистограмма?
Прежде всего, всю - так как иногда и таких данных о значениях случайной величины нет и их приходится либо добывать (эксперимент, моделирование), либо считать исходы такого сложного события равновероятными.
С другой стороны - очень мало, особенно в цифровом, численном описании СВ. Как, например, ответить на вопрос: - а сколько в среднем мы выигрываем за одно бросание кости, если выигрыш соответствует выпавшему числу на грани?
Нетрудно сосчитать:
1·0.140+2·0.080+3·0.200+
То, что мы вычислили, называется средним значением случайной величины, если нас интересует прошлое.
Если же мы поставим вопрос иначе - оценить по этим данным наш будущий выигрыш, то ответ 3.48 принято называть математическим ожиданием случайной величины, которое в общем случае определяется как
{ 1}
где P(Xi) - вероятность того, что X примет свое i-е очередное значение.
Таким образом, математическое ожидание случайной величины (как дискретной, так и непрерывной) - это то, к чему стремится ее среднее значение при достаточно большом числе наблюдений.
Обращаясь к нашему примеру, можно заметить, что кость несимметрична, в противном случае вероятности составляли бы по 1/6 каждая, а среднее и математическое ожидание составило бы 3.5.
Поэтому уместен следующий вопрос - а какова степень асимметрии кости - как ее оценить по итогам наблюдений?
Для этой цели используется специальная величина - мера рассеяния - так же как мы "усредняли" допустимые значения СВ, можно усреднить ее отклонения от среднего. Но так как разности (Xi - Mx) всегда будут компенсировать друг друга, то приходится усреднять не отклонения от среднего, а квадраты этих отклонений. Величину
{ 2}
принято называть дисперсией случайной величины X.
Вычисление дисперсии намного упрощается, если воспользоваться выражением
{ 3}
т. е. вычислять дисперсию случайной величины через усредненную разность квадратов ее значений и квадрат ее среднего значения.
Выполним такое вычисление для случайной величины с распределением рис. 1.
Таблица 2
Грани(X) | 1 | 2 | 3 | 4 | 5 | 6 | Итого |
X2 | 1 | 4 | 9 | 16 | 25 | 36 | |
Pi | 0.140 | 0.080 | 0.200 | 0.400 | 0.100 | 0.080 | 1.00 |
Pi·X2·1000 | 140 | 320 | 1800 | 6400 | 2500 | 2880 | 14040 |
Таким образом, дисперсия составит 14.04 - (3.48)2 = 1.930.
Заметим, что размерность дисперсии не совпадает с размерностью самой СВ и это не позволяет оценить величину разброса. Поэтому чаще всего вместо дисперсии используется квадратный корень из ее значения - т. н. среднеквадратичное отклонение или отклонение от среднего значения:
{ 4}
составляющее в нашем случае . Много это или мало?
Сообразим, что в случае наблюдения только одного из возможных значений (разброса нет) среднее было бы равно именно этому значению, а дисперсия составила бы 0. И наоборот - если бы все значения наблюдались одинаково часто (были бы равновероятными), то среднее значение составило бы (1+2+3+4+5+6) / 6 = 3.500; усредненный квадрат отклонения - (1 + 4 + 9 + 16 + 25 + 36) / 6 =15.167; а дисперсия 15.167-12.25 = 2.917.
Таким образом, наибольшее рассеяние значений СВ имеет место при ее равновероятном или равномерном распределении.
Отметим, что значения Mx и SX являются размерными и их абсолютные значения мало что говорят. Поэтому часто для грубой оценки "случайности" данной СВ используют т. н. коэффициент вариации или отношение корня квадратного из дисперсии к величине математического ожидания:
Vx
= SX/MX
В нашем примере эта величина составит 1.389/3.48=0.399.
Итак, неслучайная, детерминированная величина имеет математическое ожидание равное ей самой, нулевую дисперсию и нулевой коэффициент вариации, в то время как равномерно распределенная СВ имеет максимальную дисперсию и максимальный коэффициент вариации.
В ряде ситуаций приходится иметь дело с непрерывно распределенными СВ - весами, расстояниями и т. п. Для них идея оценки среднего значения (математического ожидания) и меры рассеяния (дисперсии) остается той же, что и для дискретных СВ. Приходится только вместо соответствующих сумм вычислять интегралы. Второе отличие - для непрерывной СВ вопрос о том какова вероятность принятия нею конкретного значения обычно не имеет смысла - как проверить, что вес товара составляет точно 242 кг - не больше и не меньше?
Для
всех СВ - дискретных и непрерывно распределенных,
имеет очень большой смысл
вопрос о диапазоне значений. В
самом деле, иногда знание вероятности
того события, что случайная величина
не превзойдет заданный рубеж, является
единственным способом использовать имеющуюся
информацию для системного анализа и системного
подхода к управлению. Правило определения
вероятности попадания в диапазон очень
просто - надо просуммировать вероятности
отдельных дискретных значений диапазона
или проинтегрировать кривую распределения
на этом диапазоне.