Автор работы: Пользователь скрыл имя, 06 Мая 2010 в 18:23, Не определен
Человек проявляет интерес к правильным многогранникам на протяжении всей своей сознательной деятельности – от двухлетнего ребенка, играющего деревянными кубиками, до зрелого математика, наслаждающегося чтением книг о многогранниках. Некоторые из правильных и полуправильных тел встречаются в природе в виде кристаллов, другие – в виде вирусов (которые можно рассмотреть с помощью электронного микроскопа). Пчелы строили шестиугольные соты задолго до появления человека, а в истории цивилизации создание многогранных тел (подобных пирамидам) наряду с другими видами пластических искусств уходит в глубь веков.
Таблица 1. Числовые характеристики Платоновых тел.
Рассматривая табл. 1, зададимся вопросом: «нет ли закономерности в возрастании чисел в каждом столбцах граней, вершин и ребер?» По-видимому, нет. Вот в столбце «грани» все сначала пошло хорошо (4 + 2 = 6, 6 + 2 = 8), а потом намеченная закономерность «провалилась» (8 + 2 ). В столбце «вершины» нет даже стабильного возрастания. Число вершин то возрастает (от 4 до 8, от 6 до 20), а то и убывает (от 8 до 6, от 20 до 12). В столбце «ребра» закономерности тоже не видно.
Мы сравнивали числа внутри
одного столбца. Но можно
Правильный
многогранник |
Число | |
Граней и вершин (Г + В) | Ребер (Р) | |
Тетраэдр
Куб Октаэдр Додекаэдр Икосаэдр |
4 + 4 = 8
6 + 8 = 14 8 + 6 = 14 12 + 20 = 32 20 + 12 = 32 |
6
12 12 30 30 |
Вот теперь закономерность видна.
Сформулируем ее так: «Сумма числа граней и вершин равна числу ребер, увеличенному на 2»: Г + В = Р + 2.
Итак, получена формула, которая была подмечена уже Декартом в 1640 году, а позднее переоткрыта Эйлером (1752), имя которого с тех пор она и носит. Формула Эйлера верна для любых выпуклых многогранников.
Итак, получена формула, которая была подмечена уже Декартом в 1640 году, а позднее переоткрыта Эйлером (1752), имя которого с тех пор она и носит. Формула Эйлера верна для любых выпуклых многогранников.
Элементы симметрии:
Тетраэдр не имеет центра симметрии, но имеет 3 оси симметрии и 6 плоскостей симметрии.
Радиус описанной сферы:
Радиус вписанной сферы:
Площадь поверхности:
Объем тетраэдра:
Куб имеет центр симметрии - центр куба, 9 осей симметрии и 9 плоскостей симметрии.
Радиус описанной сферы:
Радиус вписанной сферы:
Площадь поверхности куба:
S=a²,
Объем куба:
V=a³.
Октаэдр имеет центр симметрии - центр октаэдра, 9 осей симметрии и 9 плоскостей симметрии.
Радиус описанной сферы:
Радиус вписанной сферы:
Площадь поверхности:
Объем октаэдра:
Икосаэдр имеет центр симметрии - центр икосаэдра, 15 осей симметрии и 15 плоскостей симметрии.
Радиус описанной сферы:
Радиус вписанной сферы:
Площадь поверхности:
Объем икосаэдра:
Додекаэдр имеет центр симметрии - центр додекаэдра, 15 осей симметрии и 15 плоскостей симметрии.
Радиус описанной сферы:
Радиус вписанной сферы:
Площадь поверхности:
Объем додекаэдра:
5. Теория Кеплера.
В Европе в XYI – XYII вв. жил и творил замечательный немецкий астроном, математик и великий фантазер Иоганн Кеплер (1571-1630).
Кеплер действительно выступал в науке как астроном, математик и фантазер. Если бы в нем не было хотя бы одного из названных качеств, то он не смог бы достичь таких высот в науке.
На основе обобщения данных, полученных в результате наблюдений, он установил три закона движения планет относительно Солнца.
Первый закон: каждая планета движется по эллипсу, в одном из фокусов которого находится Солнце.
Второй закон: каждая планета движется в плоскости, проходящей через центр Солнца, причем площадь сектора орбиты, описанная радиус-вектором, изменяется пропорционально времени.
Третий закон: квадраты времени обращения планеты вокруг Солнца относятся, как кубы их средних расстояний от Солнца.
Но это были только гипотезы, пока их не объяснил и уточнил на основе закона всемирного тяготения Исаак Ньютон (1643-1727), создавший теорию движения небесных тел, которая доказала свою жизнеспособность тем, что с ее помощью люди научились предсказывать многие небесные явления.
Но представим себя на месте Кеплера. Перед ним различные таблицы–столбики цифр. Это результаты наблюдений – как его собственных, так и великих предшественников-астрономов. В этом море вычислительной работы человек хочет найти некоторую закономерность. Что поддерживает его в таком грандиозном замысле? Во-первых, вера в гармонию, уверенность в том, что мироздание устроено закономерно, а значит, законы его устройства можно обнаружить. А во-вторых, фантазия в сочетании с терпением и честностью. В самом деле, ну надо же от чего-то оттолкнуться! Искомые законы надо сначала придумать в собственной голове, а потом проверять их наблюдениями.
Сначала
Кеплера соблазнила мысль о том,
что существует всего, пять правильных
многогранников и всего шесть (как казалось
тогда) планет Солнечной системы: Меркурий,
Венера, Земля, Марс, Юпитер, Сатурн. Показалось,
что гармония мира и любовь природы к повторениям
сделали правильные многогранники связующими
звеньями между шестью небесными телами.
Кеплер предположил, что сферы планет
связаны между собой вписанными в них
Платоновыми телами. Так как для каждого
правильного многогранника центры вписанной
и описанной сфер совпадают, то вся модель
будет иметь единый центр, в котором располагается
Солнце.
Кеплер
выполнил огромную вычислительную работу,
чтобы подтвердить свои предположения.
В 1596 году он выпустил книгу, в которой
они были изложены. Согласно этим предположениям,
в сферу орбиты Сатурна можно вписать
куб, в который вписывается сфера орбиты
Юпитера. В нее, в свою очередь, вписывается
тетраэдр, описанный около сферы орбиты
Марса. В сферу орбиты Марса вписывается
додекаэдр, в который вписывается сфера
орбиты Земли. А она описана около икосаэдра,
в который вписана сфера орбиты Венеры.
Сфера этой планеты описана около октаэдра,
в который вписывается сфера Меркурия.
Такая модель Солнечной системы получила
название «Космического кубка» Кеплера.
6.
Задача о проверке космической
теории Платоновых тел.
Можно
проверить самим космическую
теорию Платоновых тел. Рассмотрим
задачу:
«Средние радиусы орбиты Сатурна и Юпитера равны соответственно Rс= 1, 427·109 км и Rю = 0,788 · 109 км. Найдите отношение радиусов орбит указанных планет и сравните найденное отношение с отношением радиусов описанной около куба и вписанной в него сфер».
Решение.
Согласно гипотезе Кеплера эти отношения должны быть равны. Итак, из наблюдений имеем:
.
Согласно гипотезе в сферу орбиты Сатурна вписан куб, пусть его ребро равно а. Тогда радиус вписанной окружности равен половине диагонали вписанного куба, т.е. но и тогда . В этот куб вписана сфера (орбита Юпитера). Обозначим ее радиус через r. Он равен половине ребра куба, т.е. . Тогда .
Как
видим, расхождение между
Год
за годом он уточнял свои наблюдения,
перепроверял данные коллег, но, наконец,
нашел в себе силы отказаться от
заманчивой гипотезы. Однако ее следы
просматриваются в третьем
Каким образом они могли появиться в сознании человека, если бы он не рассуждал об объеме пространственных тел? Ведь именно объем, как мы знаем, выражается кубами линейных размеров тел. Но это тоже гипотеза, гипотеза о том, как были найдены законы Кеплера. У нас нет возможности ее проверить, но мы твердо знаем одно: без гипотез, иногда самых неожиданных, казалось бы, бредовых, не может существовать наука.
Полуправильные многогранники
Известно еще множество совершенных тел, получивших название полуправильных многогранников или Архимедовых тел. У них также все многогранные углы равны и все грани – правильные многоугольники, но несколько разных типов. Существует 13 полуправильных многогранников, открытие которых приписывается Архимеду.
Архимед (287 г. до н.э. – 212 г. до н.э)
Множество
Архимедовых тел можно разбить на несколько
групп. Первую из них составляют пять многогранников,
которые получаются из Платоновых тел
в результате их усечения. Усеченное тело
– это тело с отрезанной верхушкой. Для
Платоновых тел усечение может быть сделано
таким образом, что и получающиеся новые
грани и остающиеся части старых будут
правильными многоугольниками. Таким
путем могут быть получены пять Архимедовых
тел: усеченный тетраэдр, усеченный гексаэдр
(куб), усеченный октаэдр, усеченный додекаэдр
и усеченный икосаэдр (Рис. 2).
(а) | (б) | (в) |
(г) | (д) |
Рисунок 2. Архимедовы тела: (а) усеченный тетраэдр, (б) усеченный куб, (в) усеченный октаэдр, (г) усеченный додекаэдр, (д) усеченный икосаэдр
В своей Нобелевской лекции американский ученый Смолли, один из авторов экспериментального открытия фуллеренов, говорит об Архимеде (287-212 гг. до н.э.) как о первом исследователе усеченных многогранников, в частности, усеченного икосаэдра, правда, оговариваясь, что возможно Архимед присваивает себе эту заслугу и, возможно, икосаэдры усекали задолго до него. Достаточно упомянуть найденные в Шотландии и датированные около 2000 г. до н.э. сотни каменных предметов (по всей видимости, ритуального назначения) в форме сфер и различных многогранников (тел, ограниченных со всех сторон плоскими гранями), включая икосаэдры и додекаэдры. Оригинальная работа Архимеда, к сожалению, не сохранилась, и ее результаты дошли до нас, что называется, «из вторых рук». Во времена Возрождения все Архимедовы тела одно за другим были «открыты» заново. В конце концов, Кеплер в 1619 г. в своей книге «Мировая гармония» («Harmonice Mundi») дал исчерпывающее описание всего набора архимедовых тел — многогранников, каждая грань которых представляет собой правильный многоугольник, а все вершины находятся в эквивалентном положении (как атомы углерода в молекуле С60). Архимедовы тела состоят не менее, чем из двух различных типов многоугольников, в отличие от 5 Платоновых тел, все грани которых одинаковы (как в молекуле С20, например).