Практическое применение численных методов решения краевых задач для дифференциальных уравнений

Автор работы: Пользователь скрыл имя, 07 Мая 2013 в 23:35, курсовая работа

Описание работы

Приближённые методы возникли до появления ЭВМ и не утратили до сих пор своего значения. Это— методы коллокаций, наименьших квадратов, метод Галёркина, вариационные и проекционные методы. Приближенные методы состоят из аналитических методов решения ОДУ. Так метод коллокаций, а также схожий с ним метод Галеркина, подразумевают введение операторов для уравнения и краевых условий и выбор базисных функций, удовлетворяющих условию, дальнейшее решение производится по формулам, связывающим базисные функции с искомой функцией. Суть вариационных методов заключается в приведении краевой задачи к аналогичной вариационной задаче и ее последующем решении.

Содержание работы

Введение ………………………………………………………………………….2
Глава 1. Численные методы решения краевых задач для обыкновенных дифференциальных уравнений
1.1. Постановка задачи и основные положения………….……….…….5
1.2. Метод прогонки……………………………………………………...12
1.3. Конечно-разностный метод (метод сеток)………………..………..15
1.4. Метод стрельбы……………………………………..….…………….24
Глава 2. Практическое применение численных методов решения краевых задач для дифференциальных уравнений.
2.1. Метод стрельбы…………………………………………………….....29
2.2 . Конечно-разностный метод (метод сеток)………………………….33
2.3. Сравнение результатов вычислений………………………………....37
Заключение……………………………………………………………………….43
Список литературы…………………