Понятие биотехнологий

Автор работы: Пользователь скрыл имя, 01 Ноября 2010 в 12:48, Не определен

Описание работы

Доклад

Файлы: 1 файл

Биотехнологии.doc

— 52.50 Кб (Скачать файл)

Биотехнологии 

Удивительными открытиями в науке и грандиозным  научно-техническим прогрессом ознаменовался XX век, однако научно-технический прогресс в настоящем виде имеет негативные стороны: исчерпание ископаемых ресурсов загрязнение окружающей среды, исчезновение многих видов растений и животных, глобальное изменение климата, появление озоновых дыр над полюсами Земли и т.д. Ясно, что такой путь ведёт в тупик. Нужно принципиальное изменение вектора развития. Биотехнология может внести решающий вклад в решение глобальных проблем человечества. 

Биотехнология - это использование живых организмов (или их составных частей) в практических целях. Когда говорят о современной  биотехнологии, то подобное определение  дополняют словами: на базе достижений молекулярной биологии. Если не сделать подобного добавления, то под определение "биотехнология" попадут и традиционное с/х, животноводство и многие отрасли пищевой промышленности, использующие микроорганизмы. Далее мы остановимся на одном из видов биотехнологии, а именно на генной инженерии, которая открывает совершенно новые пути в медицине химии, в производстве Энергии, новых материалов, в охране окружающей среды. Генная инженерия - это технология манипуляций с веществом наследственности - ДНК.  

Сегодня учёные могут в пробирке разрезать молекулу ДНК в желательном месте, изолировать и очищать отдельные её фрагменты, синтезировать их из двух дезоксирибонуклеотидов, могут сшивать такие фрагменты. Результатом таких манипуляций являются "гибридные", или рекомбинантные молекулы ДНК, которых до этого не было в природе. 

Годом рождения генной инженерии считается 1972 год, когда в лаборатории Пола Берга  в США была получена в пробирке первая рекомбинантная реплицироваться, т.е. размножаться, в бактерии кишечной палочки E.сoli. Само появление генной инженерии стало возможным благодаря фундаментальным открытиям в молекулярной биологии. 

В 60-е годы ученые расшифровали генетический код, т.е. установили, что каждая аминокислота в белке  кодируется триплетом нуклеотидов  в ДНК. Особенно важно, что генетический код универсален для всего живого мира. Это означает, что весь мир "разговаривает" на одном языке. Если передать в какую- либо клетку "чужеродную" ДНК, то информация, в ней закодированная, будет правильно воспринята клеткой реципиентом. 

Далее было установлено, что существуют специальные последовательности ДНК, определяющие начало и окончание  транскрипции, трансляции , репликации. Практически все эти системы, в первом приближении, безразличны  к последовательностям ДНК, расположенным  между данными сигналами. Надо сказать, что сами сигналы различаются в разных организмах. Из всего сказанного следует, что если взять некий структурный ген(например человека) и in vitro снабдить его сигналами, характерными для гена бактериальной клетки, то такая структура, помещённая в бактериальную клетку, будет способна к синтезу человеческого белка. 

Принципиальная  особенность генной - способность  создавать структуры ДНК, которые  никогда не образуются в живой  природе. Генная инженерия преодолела барьер, существующий в живом мире, где генетический обмен осуществляется только в пределах одного вида или близкородственных видов организмов. Она позволяет переносить гены из одного живого организма в любой другой. Эта новая техника открыла безграничные перспективы создания микроорганизмов, растений и животных с новыми полезными свойствами. 

Конечно, нарушение  барьеров живой природы может  таить потенциальную опасность. Вот почему во всех развитых странах  мира правила работы, законы, регулирующие генно-инженерную деятельность. Закон о "генно-инженерной деятельности" принят и парламентом РФ в июле 1996 г. 

Невозможно рассказать о всех аспектах применения техники  генной инженерии в биотехнологии  или научных исследованиях. Приведём лишь несколько примеров, иллюстрирующих возможности этого метода. 

Одно из наиболее важных направлений генной инженерии - производство лекарств нового поколения, представляющих собой биологически активные белки человека. Следует  напомнить, что в большинстве  случаев белки человека (как и  других животных) видоспецифичны, т.е. для лечения человека можно использовать только белки человека. Вследствие этого возникает проблема получения человеческих белков в нужных количествах. 

В связи со сказанным  интересна история получения  интерферонов. В 1957 г. английские ученые Иссаакс и Линдельман обнаружили, что мыши, болевшие гриппом, не подвержены инфекции другими, более опасными вирусами. Исследование наблюдаемого явления привело к выводу, клетки животных и человека в ответ на вирусную инфекцию выделяют какое-то вещество, которое делает окружающие здоровые клетки устойчивыми к вирусной инфекции. Это вещество (или вещества) получило название интерферона. 

В течение последующих 20 лет велись интенсивные исследования. Было установлено, что интерфероны - группы белков, относящиеся к 3 классам - alpha, betta и gamma. Лейкоциты крови выделяют интерферон типа alpha , фибробласты типа betta и T- лейкоциты типа gamma. Интерфероны выделили, очистили и показали их эффект как противовирусных лекарств. Кроме того, эти белки оказались эффективными при лечении рассеянного склероза и некоторых видов рака. Единственным препятствием к использованию интерферонов была их малая доступность. Они синтезировались в очень малых количествах: источником их получения была или донорская кровь, или культура клеток человека. К сожалению, эти источники не позволяли получать интерфероны в количестве, нужных медицине. 

В 1980 - 1985 гг. в  нескольких лабораториях мира, в том  числе и в СССР, были выделены гены человека, определяющие синтез интерферонов, и введены в бактерии. Такие бактерии стали способны синтезировать человеческий интерферон. Очень важно, что они быстро растут, используют дешёвую питательную среду и синтезируют большое количество белка. Из 1 л бактериальной культуры можно выделить столько человеческого интерферона alpha, сколько из 10 тыс. л. донорской крови. Полученный белок абсолютно идентичен интерферону, синтезируемому в организме человека. Конечно, пришлось решать сложную задачу очистки интерферона, полученного способом генной инженерии, до гомогенного состояния. 

Ещё 4 - 6 лет заняли доклинические и клинические  испытания. Наконец в 1989 -1990 гг. появилось  новое лекарство - человеческий интерферон alpha; в России он выпускается под  названием "реаферон". За эту работу группа ученых удостоена Ленинской премии. 

Сегодня это  почти единственный препарат, который  эффективен против вирусных гепатитов  как в острой, так и в хронических  формах, против герпеса, простудных заболеваний. Интерферон применяется и в терапии  некоторых видов рака. За рубежом с 1994 г. выпускаются препараты betta и gamma - интерферонов человека. 

Из других препаратов рекомбинантных белков человека, получивших широкое медицинское применение, следует назвать инсулин, гормон роста, эритропоэтин. Свиной инсулин  отличается от человеческого всего одной аминокислотой. Применяется с 1926 г. для лечения людей при инсулинзависимом сахарном диабете. Для гормона роста и эритропоэтина отмечается, как и для интерферонов, видоспецифичность белков. Генная инженерия открыла новую возможность использования этих белков в медицине. Гормон роста применяется не только для борьбы с карликовостью, но и широко используется как стимулятор для заживления ран, сращивания костей. Гормоны роста животных начали использовать в с/х (увеличение на 15% удоя коров, ускорение роста рыб). Эритропоэтин - стимулятор кроветворения и используется при лечении различного рода анемий. 

В настоящее  время в мире получили разрешение на применение более 30 препаратов, созданных  методами генной инженерии, и более 200 находятся на разных стадиях клинических  исследований. Сейчас более 20% фармацевтического  рынка лекарств составляют лекарства  новой биотехнологии. 

Использование рекомбинантных белков человека - принципиально  новая терапия. В не вводится ничего чужого. Действительно, если в нём  не хватает инсулина или гормона  роста, их добавляют (заместительная терапия). С вирусами организм сам борется с помощью интерферонов - человек просто помогает ему. 

Значительные  успехи достигнуты в генной инженерии  растений. В основе этой техники  лежат методы культивирования клеток и тканей растений в пробирке и  возможность регенерации целого растения из отдельных клеток. 

В генной инженерии  растений есть свои проблемы. Одна из них  состоит в том, что многие полезные свойства растений кодируются не одним, а многими генами. Это делает трудным  или невозможным прямое генно-инженерное совершенствование свойств. Другое препятствие, которое постепенно преодолевается, - трудности культивирования и регенерации клеток в целое растение среди некоторых видов, например злаков. Лучшие результаты получены в том случае, когда перенос одного гена может привести к появлению у растения полезного свойства. 

Несмотря на ограничения, получены впечатляющие результаты: созданы сорта хлопчатника, томатов, табака, риса, устойчивых к насекомым-вредителям, вирусам, грибковым заболеваниям. Пионер в области применения генно-инженерных растений в с/х - США. Здесь в 1996 году до 20% посевов хлопчатника произведено семенами, модифицированными методом генной инженерии. 

Создание генно-инженерных (их сейчас называют трансгенными) животных имеет те же принципиальные трудности, что и создание трансгенных растений, а именно: множественность генов, определяющих хозяйственно ценные признаки. Тем не менее, есть быстро развивающаяся область, связанная с созданием трансгенных животных - продуцентов биологически активных белков. 

В высших организмах конкретные гены кодируют производство белков в определенных тканях. Хотя все гены содержатся в каждой клетке, в специализированных клетках работают только некоторые из них, этим и определяется тканевая специфичность. Примером может служить производство белков молока (козеин, лактальбумин) в молочных железах. Есть возможность подставить нужный нам ген под регуляторные последовательности, например казеина, и получить чужеродный белок в составе молока. Важно при этом, что животное чувствует себя нормально, так как чужой ген работает только в процессе лактации. 

В мире уже существуют сотни трансгенных овец и коз, продуцирующих в молоке от десятков миллиграмм до нескольких грамм биологически активных белков человека в 1л молока. Такой метод производства экономически выгоден и экологически чище, хотя и требует от ученых больших усилий и времени при создании трансгенных животных по сравнению с созданием генно-инженерных микроорганизмов. 

С молоком трансгенных  животных можно получать не только лекарства. Известно, что для производства сыра высокого качества необходим фермент, створаживающий молоко, - реннин. Этот фермент добывают из желудков молочных телят. Он дорог и не всегда доступен. Наконец, генные инженеры сконструировали дрожжи, которые стали производить этот ценный белок при микробиологическом синтезе. 

Следующий этап генной инженерии - создание трансгенных  овец, которые синтезируют химозин  в молоке. Небольшое стадо наших  овец в России находится на Ленинских  Горках под Москвой. Эти овцы синтезируют  до 300 мг/л фермента в молоке. Для процесса сыроварения белок можно не выделять, а использовать просто в составе молока. 

Возможна экспансия  биотехнологии в области, которые  сегодня целиком принадлежат  химии. Это - биокатализ (вместо химического  катализа) и новые материалы. Один из процессов биокатализа, успешно реализованного в промышленности, - получение акриламида из акрилонитрила.  

CH2=CH–CN -> CH2=CH-C=0 

| 

NH2 

Акриламид служит исходным мономером для получения  полимеров и сополимеров, широко используемых при очистке воды и стоков, в горном деле, при осветлении соков и вин, приготовлении красок и т.п. 

До недавнего  времени процесс гидролиза нитрила  вели при 105 С в присутствии серной кислоты. После окончания процесса серную кислоту нейтрализовали аммиаком. Большое количество сернокислого аммония, в конечном счёте оказывался в реках. Были велики затраты энергии, быстро изнашивалось оборудование, и качество акриламида оставляло желать лучшего. 

В 1987 году ученые из института генетики и селекции промышленных микроорганизмов совместно со своими коллегами из Саратовского филиала института приступили к поиску в природе микроорганизмов, которые могли бы превращать акрилонитрил в акриламид, Такие микроорганизмы были найдены. После ряда манипуляций получены микроорганизмы, синтезирующие в 10 тыс. раз больше фермента – нитрилгидратазы, ответственного за трансформацию акрилонитрила. 

Достижения учёных реализованы на практике. На одном  из заводов, выпускающий антибиотики, налажен выпуск биокатализатора, т.е. нужных микроорганизмов, а ещё на 3 заводах осуществлён процесс биокаталитического получения акриламида. Процесс осуществляется при комнатном давлении и температуре, следовательно, мало энергоёмок. Процесс практически не имеет отходов, экологически чист. Получаемый новым методом акриламид имеет высокую чистоту, что важно, так как большая его часть далее полимеризуется в полиакриламид, а качество полимера сильно зависит от чистоты мономера. 

Информация о работе Понятие биотехнологий