Автор работы: Пользователь скрыл имя, 16 Марта 2011 в 09:16, реферат
Создание новых технологий, их развитие и воплощение в коммерческих продуктах – процесс непрерывный и закономерный. Без появления новых технологий остановился бы технический прогресс, а рыночную экономику ждал бы неминуемый коллапс. Однако каждая из новых разработок имеет свои особенности и определенный потенциал. Если одни могут лишь незначительно улучшить существующие решения, то другие способны совершить настоящий переворот в той или иной отрасли ИT-индустрии.
ВВЕДЕНИЕ 4
1. ИСТОРИЯ РАЗВИТИЯ ПЕРСПЕКТИВНЫХ ТЕХНОЛОГИЙ 5
2. КЛАССИЧЕСКИЕ РЕШЕНИЯ 10
3. ТИПЫ ПАМЯТИ 11
3.1.ПОЛИМЕРНАЯ ПАМЯТЬ (PFRAM) 11
3.2. PRAM 12
3.3. MRAM 12
3.4. FERAM 15
ЗАКЛЮЧЕНИЕ 17
БИБЛИОГРАФИЧЕСКИЙ СПИСОК 19
Министерство образования и науки Российской Федерации
Факультет «»
Кафедра
«»
Перспективные технологии памяти
РЕФЕРАТ
по дисциплине
«»
Проверил
______________________2010
г.
Автор работы (проекта)
____________________2010
г.
Реферат защищен
с оценкой
___________________________
_____________________2010
г.
Златоуст 2010
СОДЕРЖАНИЕ
ВВЕДЕНИЕ 4
1. ИСТОРИЯ РАЗВИТИЯ ПЕРСПЕКТИВНЫХ ТЕХНОЛОГИЙ 5
2. КЛАССИЧЕСКИЕ РЕШЕНИЯ 10
3. ТИПЫ ПАМЯТИ 11
3.1.ПОЛИМЕРНАЯ ПАМЯТЬ (PFRAM) 11
3.2. PRAM 12
3.3. MRAM 12
3.4. FERAM 15
ЗАКЛЮЧЕНИЕ 17
БИБЛИОГРАФИЧЕСКИЙ СПИСОК 19
Создание новых технологий, их развитие и воплощение в коммерческих продуктах – процесс непрерывный и закономерный. Без появления новых технологий остановился бы технический прогресс, а рыночную экономику ждал бы неминуемый коллапс. Однако каждая из новых разработок имеет свои особенности и определенный потенциал. Если одни могут лишь незначительно улучшить существующие решения, то другие способны совершить настоящий переворот в той или иной отрасли ИT-индустрии.
В
современной электронике
Попытки создать универсальную память, обладающую достоинствами всех видов – энергонезависимостью, малым временем доступа и произвольной адресацией, велись непрерывно. Испытывались различные физические принципы, опробовались новые материалы, разрабатывались и менялись технологии. Появились новые микросхемы памяти, причем некоторые из них стали серийным продуктом, изменились структуры ячеек памяти, яснее обозначились возможности, достоинства и недостатки различных технологий. Наконец, появились совершенно новые технические решения.
Кремниевые полупроводниковые технологии почти исчерпали свои ресурсы, и поэтому неотвратимо приближается эра новых технических решений. В декабре 2005 года было опубликовано официальное сообщение International Technology Roadmap for Semiconductors от имени Международного комитета производителей. В сообщении говорится о начале перехода к посткремниевой эре в схемотехнике. Производители из Японии, Европы, Кореи, США и Тайваня планируют в ближайшее время представить объединенный план перехода на новую технологию. Вероятно, универсальная память, как важнейший компонент электронных устройств, если когда-нибудь и появится, то будет продуктом именно новых, а не традиционных кремниевых технологий. [4]
Основным отличием современных подходов к разработке энергонезависимой памяти является применение совершенно новых физических принципов и механизмов хранения информации:
Приблизительно с 2000 года ведутся настойчивые попытки разработать технологию серийного производства памяти на веществах с изменяемым фазовым состоянием. На так называемых халькогенидах на основе селена, серы или теллура. Эти вещества (халькогениды) меняют свое строение при нагревании, переходя из кристаллической фазы в аморфное состояние. В этом состоянии вещество остается после остывания. Но если его вновь нагреть и выдержать в расплавленном состоянии короткое время (около 50 нс), то оно вновь вернется к исходному, кристаллическому виду. Широко известны оптические запоминающие устройства (CD ROM), которые реализуются именно на таких материалах.
Как
оказалось, при смене фазового состояния
меняются не только оптические, но и
электрические характеристики вещества.
Проводимость кристаллического перехода
отличается от проводимости аморфного
в десятки и даже сотни раз.
Эту особенность и используют
в новых ИС запоминающих устройств.
Кроме энергонезависимости
Первыми занялись разработками технологии специалисты фирмы Ovonyx. Компании удалось добиться успеха в своих исследованиях и определить основные принципы технологии производства памяти в интегральном исполнении. Патенты на нее быстро разошлись по свету. Попытки усовершенствовать процессы и получить промышленные образцы таких ЗУ велись в ряде крупнейших фирм (STMicroelectronics, BAE Systems). Конечно же, такой гигант, как Intel, тоже не обошел вниманием указанную проблему, но он, впрочем, принимает участие в разработках вообще всех перспективных технологий. Однако удача сопутствовала не всем. Прошли годы, но лишь одна BAE Systems (компания — один из крупных поставщиков электронных систем для вооруженных сил США и NASA), сообщила о начале серийного производства C-RAM (Chalcogenide Random Access Memory). В других компаниях такие ЗУ называют PCM (Phase Change Memory), или OUM (Ovonyx Unified Memory). [1]
Другая
технология, в которой использованы
самые современные достижения, память
на нанопереключателях, реализуется
на углеродных нанотрубках. (Приставка
«нано» означает применение прецизионных
технологий, в которых размеры
основных элементов структуры меньше
100 нм (< 0,1 микрона), а также продукты,
в принципах, работы которых проявляются
законы квантовой физики.) Здесь
использованы новые, ранее неизвестные
материалы и недоступные
Всем
со школьных времен хорошо известны такие
структурные формы
Первая
ячейка памяти на нанотрубках, разработанная
в компании NEC, представляла собой
сеть скрещивающихся в пространстве
углеродных трубок, часть из них
могла приходить в
Несколько
лет назад о своих первых успехах
в данном направлении объявила новая
американская компания Nantero (www.nantero.com),
которая ведет исследования в
партнерстве с ON Semicoductors, LSI Logic и уже
знакомой нам BAE Systems. Nantero удалось найти
оригинальное решение проблемы: в
новой структуре вся
В
исходном состоянии нанотрубки натянуты
и не касаются поверхности расположенных
ниже электродов. Расстояние между
плоскостью размещения углеродных трубок
и поверхностью электродов равно
всего 13 нм. При записи информации напряжение
прикладывается к электродам и элементам
межсоединений. Находящиеся над
местом пересечения эластичные трубки
прогибаются вниз под действием
электрического поля и касаются поверхности
электродов, меняя сопротивление
цепи. Трубки удерживаются в таком
положении под действием сил
Ван Дер Ваальса после снятия
напряжения(некоторая
В процессе чтения измеряется сопротивление цепи между электродом и элементом межсоединения. Если оно мало (если трубки касаются электрода), то полагают, что в ячейку записан «0», в противном случае — «1». При тестировании опытных образцов скорость записи данных в ячейку не превышала 5 нс.
Оказалось, что для выполнения записи и стирания данных не требуется больших токов и зарядов. Память получается очень экономичной. Во всяком случае, лабораторные экземпляры обещают чудесные параметры в будущем: благодаря применению нанотехнологий размеры ячейки должны быть меньше, чем у DRAM, и, следовательно, объемы памяти будут больше. Потребляемая мощность ниже, а скорость доступа выше. Поскольку углеродные волокна имеют высокую прочность, а операции записи и чтения не нарушают структуры углеродных трубок, то срок их службы будет практически неограничен.
В отличие от Flash-памяти число циклов записи может быть бесконечным. Радиационная и электромагнитная стойкость NRAM тоже много выше, чем у традиционных кремниевых Flash. (Вероятно, именно эти качества побудили компанию BAE Systems принять участие в разработке технологии.) К сожалению, пока все это не удается воплотить в серийный продукт, имеющий конкурентную стоимость.[3]
Нанотехнологии – это абсолютно новое явление в электронике, и накопленного опыта пока еще не достаточно, чтобы уверенно прогнозировать их применимость в тех или иных областях техники. Однако заложенный в них потенциал очень велик, и по мере развития и совершенствования нанотехнологии смогут потеснить сегодняшних фаворитов.
Хотя
оба типа описанных технологий энергонезависимой
памяти (память OVONYX и память на нанопереключателях)
довольно интересны и обладают привлекательными
качествами, но все же самые большие
ожидания связаны с другими
Не застыли на месте исследования и в традиционных технологиях энергонезависимой памяти. Flash-память преодолевает все новые рубежи плотности и при этом становится все менее энергоемкой. Пока ни одна из серийных ИС памяти, сделанных по другим технологиям, не может приблизиться к Flash по этим характеристикам. Лидирующая четверка мировых производителей данного типа памяти – INTEL, AMD, TOSHIBA и SAMSUNG – все время совершенствует техпроцессы, переходя ко все более маленьким технологическим размерам. Преодолен рубеж в 90 нм, и начинается подготовка к переходу на 65-нм технологию.