Методы первичной статистической обработки результатов эксперимента

Автор работы: Пользователь скрыл имя, 27 Октября 2010 в 22:44, Не определен

Описание работы

Доклад

Файлы: 1 файл

МЕТОДЫ ПЕРВИЧНОЙ СТАТИСТИЧЕСКОЙ ОБРАБОТКИ РЕЗУЛЬТАТОВ ЭКСПЕРИМЕНТА.doc

— 248.50 Кб (Скачать файл)

Имеется несколько разновидностей данного метода: линейный, ранговый, парный и множественный. Линейный корреляционный анализ позволяет устанавливать прямые связи между переменными величинами по их абсолютным значениям. Эти связи графически выражаются прямой линией, отсюда название «линейный». Ранговая корреляция определяет зависимость не между абсолютными значениями переменных, а между порядковыми местами, или рангами, занимаемыми ими в упорядоченном по величине ряду. Парный корреляционный анализ включает изучение корреляционных зависимостей только между парами переменных, а множественный, или многомерный, — между многими переменными одновременно. Распространенной в прикладной статистике формой многомерного корреляционного анализа является факторный анализ.

На рисунке в виде множества точек представлены различные виды зависимостей между двумя переменными Xи Y(различные поля корреляций между ними).

На фрагменте  рис. отмеченном буквой А, точки случайным образом разбросаны по координатной плоскости. Здесь по величине Xнельзя делать какие-либо определенные выводы о величине У. Если в данном случае подсчитать коэффициент корреляции, то он будет равен 0, что свидетельствует о том, что достоверная связь между Xи У отсутствует (она может отсутствовать и тогда, когда коэффициент корреляции не равен 0, но близок к нему по величине). На фрагменте Б рисунка все точки лежат на одной прямой, и каждому отдельному значению переменной Xможно поставить в соответствие одно и только одно значение переменной У, причем, чем большее, тем больше Y. Такая связь между переменными Xи У называется прямой, и если это прямая, соответствующая уравнению регрессии, то связанный с ней коэффициент корреляции будет равен +1. (Заметим, что в жизни такие случаи практически не встречаются; коэффициент корреляции почти никогда не достигает величины единицы.)

На фрагменте  В рисунка коэффициент корреляции также будет равен единице, но с отрицательным знаком: -1. Это  означает обратную зависимость между  переменными Xи У, т.е., чем больше одна из них, тем меньше другая.

На фрагменте  Г рисунка точки также разбросаны не случайно, они имеют тенденцию группироваться в определенном направлении. Это направление приближенно может быть представлено уравнением прямой регрессии. Такая же особенность, но с противоположным знаком, характерна для фрагмента Д. Соответствующие этим двум фрагментам коэффициенты корреляции приблизительно будут равны +0,50 и -0,30. Заметим, что крутизна графика, или линии регрессии, не оказывает влияния на величину коэффициента корреляции. 

 

Рис. Схематическое представление различных корреляционных зависимостей с соответствующими значениями коэффициента линейной корреляции 

Наконец, фрагмент Е дает коэффициент корреляции, равный или близкий к 0, так как  в данном случае связь между переменными  хотя и существует, но не является линейной.

Коэффициент линейной корреляции определяется при  помощи следующей формулы:

где г   — коэффициент линейной корреляции;

х, у  — средние выборочные значения сравниваемых величин; х., у — частные выборочные значения сравниваемых величин; п —  общее число величин в сравниваемых рядах показателей;

si' Sy~ дисперсии,  отклонения сравниваемых величин  от

средних значений.

Пример. Определим коэффициент линейной корреляции между следующими двумя  рядами показателей. Ряд 1:2,4,4,5,3, 6, 8. Ряд II: 2, 5, 4, 6, 2, 5, 7. Средние значения этих двух рядов соответственно равны 4,6 и 4,4. Их дисперсии составляют следующие величины: 3,4 и 3,1. Подставив эти данные в приведенную выше формулу коэффициента линейной корреляции, получим следующий результат: 0,92. Следовательно, между рядами данных существует значимая связь, причем довольно явно выраженная, так как коэффициент корреляции близок к единице. Действительно, взглянув на эти ряды цифр, мы обнаруживаем, что большей цифре в одном ряду соответствует большая цифра в другом ряду и, наоборот, меньшей цифре в одном ряду соответствует примерно такая же малая цифра в другом ряду.

К коэффициенту ранговой корреляции в психолого-педагогических исследованиях обращаются в том  случае, когда признаки, между которыми устанавливается зависимость, являются качественно различными и не могут быть достаточно точно оценены при помощи так называемой интервальной измерительной шкалы. Интервальной называют такую шкалу, которая позволяет оценивать расстояния между ее значениями и судить о том, какое из них больше и насколько больше другого. Например, линейка, с помощью которой оцениваются и сравниваются длины объектов, является интервальной шкалой, так как, пользуясь ею, мы можем утверждать, что расстояние между двумя и шестью сантиметрами в два раза больше, чем расстояние между шестью и восемью сантиметрами. Если же, пользуясь некоторым измерительным инструментом, мы можем только утверждать, что одни показатели больше других, но не в состоянии сказать на сколько, то такой измерительный инструмент называется не интервальным, а порядковым.

Большинство показателей, которые получают в  психолого-педагогических исследованиях, относятся к порядковым, а не к  интервальным шкалам (например, оценки типа «да», «нет», «скорее нет, чем  да» и другие, которые можно переводить в баллы), поэтому коэффициент линейной корреляции к ним неприменим. В этом случае обращаются к использованию коэффициента ранговой корреляции, формула которого следующая:

где Rs—  коэффициент ранговой корреляции по Спирмену;

di—  разница между рангами показателей одних и тех же испытуемых в упорядоченных рядах;

п —  число испытуемых или цифровых данных (рангов) в коррелируемых рядах.

Пример. Допустим, что педагога-экспериментатора интересует, влияет ли интерес учащихся к учебному предмету на их успеваемость. Предположим, что с помощью некоторой психодиагностической методики удалось измерить величину интереса к учению и выразить его для десяти учащихся в следующих цифрах: 5,6,7,8,2,4,8,7,2,9. Допустим также, что при помощи другой методики были определены средние оценки этих же учащихся по данному предмету, оказавшиеся соответственно равными: 3,2; 4,0; 4,1; 4,2; 2,5; 5,0; 3,0; 4,8; 4,6; 2,4.

Упорядочим  оба ряда оценок по величине цифр и  припишем каждому из учащихся по два  ранга; один из них указывает на то, какое место среди остальных данных ученик занимает по успеваемости, а другой — на то, какое место среди них же он занимает по интересу к учебному предмету. Ниже приведены ряды цифр, два из которых (первый и третий) представляют исходные данные, а два других (второй и четвертый) — соответствующие ранги (таблица 3)

Определив сумму квадратов различий в рангах ( ^df) и подставив нужное значение в числитель формулы, получаем, что  коэффициент ранговой корреляции равен 0,97, т.е. достаточно высок, что и говорит о том, что между интересом к учебному предмету и успеваемостью учащихся действительно существует статистически достоверная зависимость.

Однако  по абсолютным значениям коэффициентов  корреляции не всегда можно делать однозначные выводы о том, являются ли они значимыми, т.е. достоверно свидетельствуют о существовании зависимости между сравниваемыми переменными. Может случиться так, что коэффициент корреляции, равный 0,50, не будет достоверным, а коэффициент корреляции, составивший 0,30, — достоверным. Многое в решении этого вопроса зависит от того, сколько показателей было в коррелируемых друг с другом рядах признаков: чем больше таких показателей, тем меньшим по величине может быть статистически достоверный коэффициент корреляции.

В табл. 35 представлены критические значения коэффициентов корреляции для различных степеней свободы. (В данном

1 Если  исходные данные, которые ранжируются,  одинаковы, то и их ранги  также будут одинаковыми. Они  получаются путем суммирования  и деления пополам тех рангов, которые соответствуют этим данным.

Степенью свободы будет число, равное и — 2, где п — количество данных в коррелируемых рядах.) Заметим, что значимость коэффициента корреляции зависит и от заданного уровня значимости или принятой вероятности допустимой ошибки в расчетах. Если, к примеру, коррелируется друг с другом два ряда цифр по 10 единиц в каждом и получен коэффициент корреляции между ними, равный 0,65, то он будет значимым на уровне 0,95 (он больше критического табличного значения, составляющего 0,6319 для вероятности допустимой ошибки 0,05, и меньше критического значения 0,7646 для вероятности допустимой ошибки 0,01).

Метод множественных корреляций в отличие  от метода парных корреляций позволяет  выявить общую структуру корреляционных зависимостей, существующих внутри многомерного экспериментального материала, включающего более двух переменных, и представить эти корреляционные зависимости в виде некоторой системы.

Один  из наиболее распространенных вариантов  этого метода — факторный анализ — позволяет определить совокупность внутренних взаимосвязей, возможных причинно-следственных связей, существующих в экспериментальном материале. В результате факторного анализа обнаруживаются так называемые факторы — причины, объясняющие множество частных (парных) корреляционных зависимостей.

Фактор  — математико-статистическое понятие. Будучи переведенным на язык психологии (эта процедура называется содержательной или психологической интерпретацией факторов), он становится психологическим  понятием. Например, в известном 16-факторном личностном тесте Р. Кеттела, который подробно рассматривался в первой части книги, каждый фактор взаимно однозначно связан с определенными чертами личности человека.

С помощью  выявленных факторов объясняют взаимозави-. симость психологических явлений. Поясним сказанное на примере. Допустим, что в некотором психолого-педагогическом эксперименте изучалось взаимовлияние таких переменных, как характер, способности, потребности и успеваемость учащихся. Предположим далее, что, оценив каждую из этих переменных у достаточно представительной выборки испытуемых и подсчитав коэффициенты парных корреляций между всевозможными парами данных переменных, мы получили следующую матрицу интеркорреляций (в ней справа и сверху цифрами обозначены в перечисленном выше порядке изученные в эксперименте переменные, а внутри самого квадрата показаны их корреляции друг с другом; поскольку всевозможных пар в данном случае меньше, чем клеток в матрице, то заполнена только верхняя часть матрицы, расположенная выше ее главной диагонали).

  

Анализ  корреляционной матрицы показывает, что переменная 1 (характер) значимо  коррелирует с переменными 2 и 3 (способности  и потребности). Переменная 2 (способности) достоверно коррелирует с переменной 3 (потребности), а переменная 3 (потребности) — с переменной 4 (успеваемость). Фактически из шести имеющихся в матрице коэффициентов корреляции четыре являются достаточно высокими и, если предположить, что они определялись на совокупности испытуемых, превышающей 10 человек, — значимыми.

Зададим некоторое правило умножения столбцов цифр на строки матрицы: каждая цифра столбца последовательно умножается на каждую цифру строки и результаты парных произведений записываются в строку аналогичной матрицы. Пример: если по этому правилу умножить друг на друга три цифры столбца и строки, представленные в левой части матричного равенства, то получим матрицу, находящуюся в правой части этого же равенства: 

Задача  факторного анализа по отношению  к только что рассмотренной является как бы противоположной. Она сводится к тому, чтобы по уже имеющейся матрице парных корреляций, аналогичной представленной в правой части показанного выше матричного равенства, отыскать одинаковые по включенным в них цифрам столбец и строку, умножение которых друг на друга по заданному правилу порождает корреляционную матрицу. Иллюстрация:

Здесь xvху х3 и хА — искомые числа. Для  их точного и быстрого определения  существуют специальные математические процедуры и программы для  ЭВМ.

Допустим, что мы уже нашли эти цифры: хх = 0,45, х2= 0,36 х3 - 1,12, х4 = 0,67. Совокупность найденных цифр и называется фактором, а сами эти цифры — факторными весами или нагрузками.

Эти цифры  соответствуют тем психологическим  переменным, между которыми вычислялись  парные корреляции. хх — характер, х2 — способности, х3 — потребности, х4 — успеваемость. Поскольку наблюдаемые в эксперименте корреляции между переменными можно рассматривать как следствие влияния на них общих причин — факторов, а факторы интерпретируются в психологических терминах, мы можем теперь от факторов перейти к содержательной психологической интерпретации обнаруженных статистических закономерностей. Фактор содержит в себе ту же самую информацию, что и вся корреляционная матрица, а факторные нагрузки соответствуют коэффициентам корреляции. В нашем примере х3 (потребности) имеет наибольшую факторную нагрузку (1,12), а х, (способности) — наименьшую (0,36).

Информация о работе Методы первичной статистической обработки результатов эксперимента