Автор работы: Пользователь скрыл имя, 27 Октября 2010 в 22:44, Не определен
Доклад
Обсуждаемую группу методов можно разделить на несколько подгрупп: 1. Регрессионное исчисление. 2. Методы сравнения между собой двух или нескольких элементарных статистик (средних, дисперсий и т.п.), относящихся к разным выборкам. 3. Методы установления статистических взаимосвязей между переменными, например их корреляции друг с другом. 4. Методы выявления внутренней статистической структуры эмпирических данных (например, факторный анализ). Рассмотрим каждую из выделенных подгрупп методов вторичной статистической обработки на примерах.
Регрессионное исчисление — это метод математической статистики, позволяющий свести частные, разрозненные данные к некоторому линейному графику, приблизительно отражающему их внутреннюю взаимосвязь, и получить возможность по значению одной из переменных приблизительно оценивать вероятное значение другой переменной.
Воспользуемся для графического представления взаимосвязанных значений двух переменных х и у точками на графике (рис. 73). Поставим перед собой задачу: заменить точки на графике линией прямой регрессии, наилучшим образом представляющей взаимосвязь, существующую между данными переменными. Иными словами, задача заключается в том, чтобы через скопление точек, имеющихся на этом графике, провести прямую линию,
Рис. Прямая регрессии YnoX. х и у — средние значения переменных. Отклонения отдельных значений от линии регрессии обозначены вертикальными пунктирными линиями. Величина yt - у является отклонением измеренного значения переменной у. от оценки, а величина у - у является отклонением оценки от среднего значения (Цит. по: Иберла К. Факторный анализ. М., 1980. С. 23).
пользуясь которой по значению одной из переменных, х или у, можно приблизительно судить о значении другой переменной. Для того чтобы решить эту задачу, необходимо правильно найти коэффициенты а и Ь в уравнении искомой прямой:
у = ах + Ь.
Это уравнение
представляет прямую на графике и
называется уравнением прямой регрессии.
Формулы для подсчета коэффициентов а и Ь являются следующими:
где х., у{ — частные значения переменных Xи Y, которым соответствуют точки на графике;
х, у — средние значения тех же самых переменных;
п — число первичных значений или точек на графике.
Для сравнения выборочных средних величин, принадлежащих к двум совокупностям данных, и для решения вопроса о том, отличаются ли средние значения статистически достоверно друг от друга, нередко используют ^-критерий Стъюдента. Его основная формула выглядит следующим образом:
где х{ — среднее значение переменной по одной выборке данных;
хг — среднее значение переменной по другой выборке данных;
т1ит2 — интегрированные показатели отклонений частных значений из двух сравниваемых выборок от соответствующих им средних величин.
/и, и т2 в свою очередь вычисляются по следующим формулам:
—2
где St— выборочная дисперсия первой переменной (по первой выборке);
—2
5"г — выборочная дисперсия второй переменной (по второй выборке);
я, — число частных значений переменной в первой выборке;
п2 — число частных значений переменной по второй выборке.
После
того как при помощи приведенной
выше формулы вычислен показатель t,
по таблице 32 для заданного числа
степеней свободы, равного п{ + п2 - 2,
и избранной вероятности
Допустим,
что имеются следующие две
выборки экспериментальных
Но так ли это и насколько статистически достоверны эти различия? На данный вопрос может точно ответить только статистический анализ с использованием описанного статистического критерия. Воспользуемся этим критерием.
Поставим
найденные значения дисперсий в
формулу для подсчета mat к вычислим
показатель t
Определим сначала выборочные дисперсии для двух сравниваемых выборок значений:
Сравним его значение с табличным для числа степеней свободы 10+10-2 = 18. Зададим вероятность допустимой ошибки, равной 0,05, и убедимся в том, что для данного числа степеней свободы и заданной вероятности допустимой ошибки значение tдолжно быть не меньше чем 2,10. У нас же этот показатель оказался равным 1,47, т.е. меньше табличного. Следовательно, гипотеза о том, что выборочные средние, равные в нашем случае 3,2 и 4,2, статистически достоверно отличаются друг от друга, не подтвердилась, хотя на первый взгляд казалось, что такие различия существуют.
Вероятность допустимой ошибки, равная и меньшая чем 0,05, считается достаточной для научно убедительных выводов. Чем меньше эта вероятность, тем точнее и убедительнее делаемые выводы. Например, избрав вероятность допустимой ошибки, равную 0,05, мы обеспечиваем точность расчетов 95% и допускаем ошибку, не превышающую 5%, а выбор вероятности допустимой ошибки 0,001 гарантирует точность расчетов, превышающую 99,99%, или ошибку, меньшую чем 0,01%.
Описанная методика сравнения средних величин по критерию Стъюдента в практике применяется тогда, когда необходимо, например, установить, удался или не удался эксперимент, оказал или не оказал он влияние на уровень развития того психологического качества, для изменения которого предназначался. Допустим, что в некотором учебном заведении вводится новая экспериментальная программа или методика обучения, рассчитанная на то, чтобы улучшить знания учащихся, повысить уровень их интеллектуального развития. В этом случае выясняется причинно-следственная связь между независимой переменной — программой или методикой и зависимой переменной — знаниями или уровнем интеллектуального развития. Соответствующая гипотеза гласит: «Введение новой учебной программы или методики обучения должно будет существенно улучшить знания или повысить уровень интеллектуального развития учащихся».
Предположим, что данный эксперимент проводится по схеме, предполагающей оценки зависимой переменной в начале и в конце эксперимента. Получив такие оценки и вычислив средние по всей изученной выборке испытуемых, мы можем воспользоваться критерием Стъюдента для точного установления наличия или отсутствия статистически достоверных различий между средними до и после эксперимента. Если окажется, что они действительно достоверно различаются, то можно будет сделать определенный вывод о том, что эксперимент удался. В противном случае нет убедительных оснований для такого вывода даже в том случае, если сами средние величины в начале и в конце эксперимента по своим абсолютным значениям различны.
Иногда в процессе проведения эксперимента возникает специальная задача сравнения не абсолютных средних значений некоторых величин до и после эксперимента, а частотных, например процентных, распределений данных. Допустим, что для экспериментального исследования была взята выборка из 100 учащихся и с ними проведен формирующий эксперимент. Предположим также, что до эксперимента 30 человек успевали на «удовлетворительно», 30 — на «хорошо», а остальные 40 — на «отлично». После эксперимента ситуация изменилась. Теперь на «удовлетворительно» успевают только 10 учащихся, на «хорошо» — 45 учащихся и на «отлично» — остальные 45 учащихся. Можно ли, опираясь на эти данные, утверждать, что формирующий эксперимент, направленный на улучшение успеваемости, удался? Для ответа на данный вопрос можно воспользоваться статистикой, называемой х2-критерий («хи-квадрат критерий»). Его формула выглядит следующим образом:
где Рк
— частоты результатов
Vk—
частоты результатов
т — общее число групп, на которые разделились результаты наблюдений.
Воспользуемся приведенным выше примером для того, чтобы показать, как работает хи-квадрат критерий. В данном примере переменная Рк принимает следующие значения: 30%, 30%, 40%, а переменная Vk— такие значения: 10%, 45%, 45%.
Подставим все эти значения в формулу для %2 и определим его величину:
Воспользуемся теперь таблицей 2, где для заданного числа степеней свободы можно выяснить степень значимости образовавшихся различий до и после эксперимента в распределении оценок. Полученное нами значение х2 = 21,5 больше соответствующего табличного значения т - 1 = 2 степеней свободы, составляющего 13,82 при вероятности допустимой ошибки меньше чем 0,001. Следовательно, гипотеза о значимых изменениях, которые произошли в оценках учащихся в результате введения новой программы или новой методики обучения, экспериментально подтвердилась: успеваемость значительно улучшилась, и это мы можем утверждать, допуская ошибку, не превышающую 0,001%.
Иногда
в психолого-педагогическом эксперименте
возникает необходимость
Подобного рода задачи решаются, в частности, при помощи критерия Фишера. Его формула выглядит следующим образом:
где п1 —¦ количество значения признака в первой из сравниваемых выборок; п2 — количество значений признака во второй из сравниваемых выборок; {п1 — 1, п2 — 1) — число степеней свободы; 5f — дисперсия по первой выборке; Si— дисперсия по второй выборке.
Вычисленное
с помощью этой формулы значение
F-крите-рия сравнивается с табличным
(табл. 2), и если оно превосходит табличное
для избранной вероятности допустимой
ошибки и заданного числа степеней свободы,
то делается вывод о том, что гипотеза
о различиях в дисперсиях подтверждается.
В противоположном случае такая гипотеза
отвергается и дисперсии считаются одинаковыми.
1 Если
отношение выборочных
Примечание.
Таблица для граничных
Пример. Сравним дисперсии следующих двух рядов цифр с целью определения статистически достоверных различий между ними. Первый ряд: 4,6, 5,7,3,4,5,6. Второй ряд: 2,7, 3,6,1,8, 4, 5. Средние значения для двух этих рядов соответственно равны: 5,0 и 4,5. Их дисперсии составляют: 1,5 и 5,25. Частное от деления большей дисперсии на меньшую равно 3,5. Это и есть искомый показатель F. Сравнивая его с табличным граничным значением 3,44, приходим к выводу о том, что дисперсии двух сопоставляемых выборок действительно отличаются друг от друга на уровне значимости более 95% или с вероятностью допустимой ошибки не более 0,05%.
Следующий метод вторичной статистической обработки, посредством которого выясняется связь или прямая зависимость между двумя рядами экспериментальных данных, носит название метод корреляций. Он показывает, каким образом одно явление влияет на другое или связано с ним в своей динамике. Подобного рода зависимости существуют, к примеру, между величинами, находящимися в причинно-следственных связях друг с другом. Если выясняется, что два явления статистически достоверно коррелируют друг с другом и если при этом есть уверенность в том, что одно из них может выступать в качестве причины другого явления, то отсюда определенно следует вывод о наличии между ними причинно-следственной зависимости.
Информация о работе Методы первичной статистической обработки результатов эксперимента