Автор работы: Пользователь скрыл имя, 25 Января 2011 в 14:48, лекция
Классификация математических моделей. 2
Математические модели с сосредоточенными параметрами. 2
Математические модели с распределенными параметрами. 2
Математические модели, основанные на экстремальных принципах. 3
Основной принцип классификации математических моделей 3
Программирование. 7
Испытание модели. 8
Исследование свойств имитационной модели. 9
Эксплуатация имитационной модели. 9
Анализ результатов моделирования. 10
При этом оцениваются точность имитации явлений, устойчивость результатов моделирования, чувствительность критериев качества к изменению параметров модели. Получить эти оценки в ряде случаев бывает весьма сложно. Однако без успешных результатов этой работы доверия к модели не будет ни у разработчика, ни у заказчика ИМ. У разных исследователей в зависимости от вида ИМ сложились различные интерпретации понятий точности, устойчивости, стационарности, чувствительности ИМ. Пока не существует общепринятой теории имитации явлений на ЭВМ. Каждому исследователю приходится полагаться на свой опыт организации имитации и на свое понимание особенностей объекта моделирования.
Точность имитации явлений представляет собой оценку влияния стохастических элементов на функционирование модели сложной системы.
Устойчивость
результатов моделирования
Стационарность режима моделирования характеризует собой некоторое установившееся равновесие процессов в модели системы, когда дальнейшая имитация бессмысленна, поскольку новой информации из модели исследователь не получит и продолжение имитации практически приводит только к увеличению затрат машинного времени. Такую возможность необходимо предусмотреть и разработать способ определения момента достижения стационарного режима моделирования. Чувствительность ИМ представляется величиной минимального приращения выбранного критерия качества, вычисляемого по статистикам моделирования, при последовательном варьировании параметров моделирования на всем диапазоне их изменений.
Этот этап начинается с составления плана эксперимента, позволяющего исследователю получить максимум информации при минимальных усилиях на вычисление. Обязательно статистическое обоснование плана эксперимента. Планирование эксперимента представляет собой процедуру выбора числа и условий проведения опытов, необходимых и достаточных для решения поставленной задачи с требуемой точностью. При этом существенно следующее: стремление к минимизации общего числа опытов, обеспечение возможности одновременного варьирования всеми переменными; использование математического аппарата, формализующего многие действия экспериментаторов; выбор четкой стратегии, позволяющей принимать обоснованные решения после каждой серии экспериментов на модели.
Затем исследователь приступает к проведению рабочих расчетов на модели. Это весьма трудоемкий процесс, требующий больших затрат ресурса ЭВМ и обилия канцелярской работы. Отметим, что уже на ранних этапах создания ИМ необходимо тщательно продумывать состав и объемы информации моделирования, чтобы существенно облегчить дальнейший анализ результатов имитации. Итогом работы являются результаты моделирования.
Данный этап
завершает технологическую
Возможно, что
в ходе интерпретации результатов
исследователь установил
Результатом
этапа интерпретации
Попробуйте разработать алгоритмическую модель равноускоренного движения материальной точки.