Математическое моделирование

Автор работы: Пользователь скрыл имя, 25 Января 2011 в 14:48, лекция

Описание работы

Классификация математических моделей. 2
Математические модели с сосредоточенными параметрами. 2
Математические модели с распределенными параметрами. 2
Математические модели, основанные на экстремальных принципах. 3
Основной принцип классификации математических моделей 3
Программирование. 7
Испытание модели. 8
Исследование свойств имитационной модели. 9
Эксплуатация имитационной модели. 9
Анализ результатов моделирования. 10

Файлы: 1 файл

Математическое моделирование.doc

— 135.00 Кб (Скачать файл)

В алгоритмической форме соотношения модели связаны с выбранным численным методом решения и записаны в виде алгоритма - последовательности вычислений. Среди алгоритмических моделей выделяют имитационные , модели предназначенные для имитации физических и информационных процессов, протекающих в объекте при его функционировании под воздействием различных факторов внешней среды.

Аналитическая модель представляет собой явные зависимости искомых переменных от заданных величин (обычно зависимости выходных параметров объекта от внутренних и внешних параметров). Такие модели получают на основе физических законов, либо в результате прямого интегрирования исходных дифференциальных уравнений. Аналитические математические модели позволяют легко и просто решать задачи определения оптимальных параметров. Поэтому, если представляется возможность получения модели в таком виде, ее всегда целесообразно реализовать, даже если при этом придется выполнить ряд вспомогательных процедур, Такие модели обычно получают методом планирования эксперимента (вычислительного или физического).

Графическая (схемная) модель представляется в виде графов, эквивалентных схем, динамических моделей, диаграмм и т.п. Для использования графических моделей должно существовать правило однозначного соответствия условных изображений элементов графической и компонентов инвариантной математических моделей.

Деление математических моделей на функциональные и структурные  определяется характером отображаемых свойств технического объекта.

Структурные модели  отображают только структуру объектов и используются только при решении задач структурного синтеза. Параметрами структурных моделей являются признаки функциональных или конструктивных элементов, из которых состоит технический объект и по которым один вариант структуры объекта отличается от другого. Эти параметры называют морфологическими перемененными. Структурные модели имеют форму таблиц, матриц и графов. Наиболее перспективно применение древовидных графов типа И-ИЛИ-дерева. Такие модели широко используют на метауровне при выборе технического решения.

Функциональные модели описывают процессы функционирования технических объектов и имеют форму систем уравнений. Они учитывают структурные и функциональные свойства объекта и позволяют решать задачи как параметрического, так и структурного синтеза. Их широко используют на всех уровнях  проектирования. На метауровне функциональные задачи позволяют решать задачи прогнозирования, на макроуровне - выбора структуры и оптимизации внутренних параметров технического объекта, на микроуровне - оптимизации параметров базовых элементов.

ПО способам получения функциональные математические модели делятся на теоретические  и экспериментальные.

Теоретические модели получают на основе описания физических процессов функционирования объекта, а экспериментальные - на основе поведения объекта во внешней среде, рассматривая его как “черный ящик”. Эксперименты при этом могут быть физические (на техническом объекте или его физической модели) или вычислительные (на теоретической математической модели).

При построении теоретических моделей используется физический и формальный подходы.

Физический  подход сводится к непосредственному  применению физических законов для описания объектов, например, законов Ньютона, Гука, Кирхгофа и т.д.

Формальный  подход использует общие математические принципы и применяется при построении как теоретических, так и экспериментальных  моделей. Экспериментальные модели - формальные. Они не учитывают всего комплекса физических свойств элементов исследуемой технической системы, а лишь устанавливают обнаруживаемую в процессе эксперимента связь между отдельными параметрами системы, которые удается варьировать и (или) осуществлять их измерение. Такие модели дают адекватное описание исследуемых процессов лишь в ограниченной области  пространства параметров, в которой осуществлялось варьирование параметров в эксперименте. Поэтому экспериментальные математические модели носят частный характер, в то время как физические законы отражают общие закономерности явлений и процессов, протекающих как во всей технической системе, так и в каждом ее элементе в отдельности. Следовательно, экспериментальные математические модели не могут быть приняты в качестве физических законов. Вместе с тем методы, применяемые для построения этих моделей широко используются при проверке научных гипотез.

Функциональные  математические модели могут быть линейные и нелинейные. Линейные модели содержат только линейные функции величин, характеризующих состояние объекта при его функционировании, и их производных. Характеристики многих элементов реальных объектов нелинейные. Математические модели таких объектов включают нелинейные функции этих величин и их производных и относятся к нелинейным.

Если при  моделировании учитываются инерционные  свойства объекта и (или) изменение во времени объекта или внешней Среды, то модель называют динамической. В противном случае модель - статическая. Математическое представление  динамической модели в общем случае может быть выражено системой дифференциальных уравнений, а статической - системой алгебраических уравнений.

Если воздействие  внешней Среды на объект носит  случайный характер и описывается случайными функциями. В этом случае требуется построение вероятностной математической модели. Однако такая модель весьма сложная и ее использование при проектировании технических объектов требует больших затрат машинного времени. Поэтому ее применяют на заключительном этапе проектирования.

Большинство проектных процедур выполняется на детерминированных моделях. Детерминированная математическая модель характеризуется взаимно однозначным соответствием между внешним воздействием на динамическую систему и ее реакцией на это воздействие. В вычислительном эксперименте при проектировании обычно задают некоторые стандартные типовые воздействия на объект: ступенчатые, импульсные, гармонические, кусочно-линейные, экспоненциальные и др. Их называют тестовыми воздействиями.  

Продолжение Таблицы “Классификация математических моделей  

Виды  математических моделей технических объектов
       
По  учету физических свойств ТО   По способности  прогнозирования результатов
         
Динамические   Детерминированные
     
Статические   Вероятностные
     
Непрерывные    
     
Дискретные    
     
Линейные    
     
Нелинейные    

Программирование.

На этом этапе  выполняются следующие действия.

Составляется  план создания и использования программной  модели. Как правило, программа модели создается с помощью средств автоматизации моделирования на ЭВМ. Поэтому в плане указываются: тип ЭВМ; средство автоматизации моделирования; примерные затраты памяти ЭВМ на создание программы модели и ее рабочих массивов; затраты машинного времени на один цикл работы модели; оценки затрат на программирование и отладку программы модели.

Затем исследователь  приступает к программированию модели. В качестве технического задания на программирование служит описание имитационной модели. Специфика работ по программированию модели зависит от средств автоматизации моделирования, которые доступны исследователю. Не существует значительных отличий создания программы модели от обычной автономной отладки программных модулей большой программы или пакета программ, В соответствии с текстом производится деление модели на блоки и подблоки. В отличие от обычной автономной  отладки программных модулей, при автономной отладке блоков и  подблоков программной модели объем работ существенно увеличивается, поскольку для каждого модуля необходимо создать и отладить еще имитатор внешнего окружения. Весьма существенно выверить реализацию функций модуля в модельном времени t и оценить затраты машинного времени на один цикл работы модели как функцию от значений параметров модели. Завершаются работы при автономной отладке компонент модели подготовкой форм представления входных и выходных данных моделирования.

Далее переходят  ко второй проверке достоверности программы  модели системы. В процессе этой проверки устанавливается соответствие операций в программе и описании модели. Для этого производится обратный перевод программы в схему модели (ручная «прокрутка» позволяет найти грубые ошибки статики модели) .

После исключения грубых ошибок ряд блоков объединяется и  начинается комплексная отладка модели с использованием тестов. Отладка по тестам начинается с нескольких блоков, затем  в этот процесс вовлекается все большее число блоков модели. Отметим, что комплексная отладка программы модели намного сложнее отладки пакетов прикладных программ, поскольку ошибки динамики моделирования в этом случае найти значительно труднее вследствие квазипараллельной работы различных компонент модели. По завершении комплексной отладки программы модели необходимо вновь оценить затраты машинного времени на один цикл расчетов на модели. При этом полезно получить аппроксимацию времени моделирования на один цикл имитации.

Следующим действием  является составление технической  документации на модель сложной системы. Результатом этапа к моменту окончания комплексной отладки программы модели должны быть следующие документы:

  • описание имитационной модели;
  • описание программы модели с указанием системы программирования и принятых обозначений;
  • полная схема программы модели;
  • полная запись программы модели на языке моделирования;
  • доказательство достоверности программы модели (результаты комплексной отладки программы модели);
  • описание входных и выходных величин с необходимыми пояснениями (размерностей, масштабов, диапазонов изменения величин, обозначений);
  • оценка затрат машинного времени на один цикл моделирования;
  • инструкция по работе с программой модели.

Для проверки адекватности модели объекту исследования после составления формального  описания системы исследователь  составляет план проведения натурных экспериментов с прототипом системы. Если прототип системы отсутствует, то можно использовать систему вложенных ИМ, отличающихся друг от друга степенью детализации имитации одних и тех же явлений. Тогда более детальная модель служит в качестве прототипа для обобщенной ИМ. Если же построить такую последовательность невозможно либо из-за отсутствия ресурсов на выполнение этой работы, либо из-за недостаточности информации, то обходятся без проверки адекватности ИМ. Согласно этому плану параллельно с отладкой ИМ осуществляется серия натурных экспериментов на реальной системе, в ходе которых накапливаются контрольные результаты. Имея в своем распоряжении контрольные результаты и результаты испытаний ИМ, исследователь проверяет адекватность модели объекту.

При обнаружении  ошибок на этапе отладки, устранимых только на предыдущих этапах, может  иметь место возврат на предыдущий этап. Кроме технической документации к результатам этапа прилагается машинная реализация модели (программа, оттранслированная в машинном коде ЭВМ, на которой будет происходить имитация).

Испытание модели.

Это важный этап создания модели. При этом необходимо выполнить следующее. Во-первых, убедиться в правильности динамики развития алгоритма моделирования объекта исследования в ходе имитации его функционирования (провести верификацию модели). Во-вторых, определить степень адекватности модели и объекта исследования. Под адекватностью программной имитационной модели реальному объекту понимают совпадение с заданной точностью векторов характеристик поведения объекта и модели. При отсутствии адекватности проводят калибровку имитационной модели («подправляют» характеристики алгоритмов компонент модели).

Наличие ошибок во взаимодействии компонент модели возвращает исследователя к этапу создания имитационной модели. Возможно, что в ходе формализации исследователь слишком упростил физические явления, исключил из рассмотрения ряд важных сторон функционирования системы, что привело к неадекватности модели объекту. В этом случае исследователь должен вернуться к этапу формализации системы. В тех случаях, когда выбор способа формализации оказался неудачным, исследователю необходимо повторить этап составления концептуальной модели с учетом новой информации и появившегося опыта. Наконец, когда у исследователя оказалось недостаточно информации об объекте, он должен вернуться к этапу составления содержательного описания системы и уточнить его с учетом результатов испытания предыдущей модели системы.

Информация о работе Математическое моделирование