Математический анализ

Автор работы: Пользователь скрыл имя, 12 Марта 2011 в 16:31, доклад

Описание работы

Математический анализ — совокупность разделов математики, посвящённых исследованию функций и их обобщений методами дифференциального и интегрального исчислений. При столь общей трактовке к анализу следует отнести и функциональный анализ вместе с теорией интеграла Лебега, комплексный анализ (ТФКП), изучающий функции, заданные на комплексной плоскости, нестандартный анализ, изучающий бесконечно малые и бесконечно большие числа, а также вариационное исчисление.

Файлы: 1 файл

Готовой доклад.doc

— 133.50 Кб (Скачать файл)

Дальнешее развитие 

В XVIII веке были разработаны и практически применены такие разделы анализа, как вариационное исчисление, обыкновенные дифференциальные уравнения и дифференциальные уравнения в частных производных, преобразования Фурье и производящие функции. На фундаменте анализа возникла математическая физика, аналитические методы глубоко проникли в геометрию и даже в теорию чисел.

В XIX веке Коши первым дал анализу твёрдое логическое обоснование, введя понятие предела  последовательности, он же открыл новую  страницу комплексного анализа. Пуассон, Лиувилль, Фурье и другие изучали дифференциальные уравнения в частных производных и гармонический анализ.

В последней  трети XIX века Вейерштрасс произвёл арифметизацию анализа, полагая  геометрическое обоснование недостаточным, и предложил классическое определение  предела через ε-δ-язык. Он же создал первую строгую теорию множества вещественных чисел. В это же время попытки усовершенствования теоремы об интегрируемости по Риману привели к созданию классификации разрывности вещественных функций. Также были открыты «патологические» примеры (нигде не дифференцируемые непрерывные функции, заполняющие пространство кривые). В связи с этим Жордан разработал теорию меры, а Кантор — теорию множеств, и в начале XX века математический анализ был формализован с их помощью. Другим важным событием XX века стала разработка нестандартного анализа как альтернативного подхода к обоснованию анализа. 

Если задана функция y(x), то это означает, что  любому допустимому значению х сопоставлено значение у. Но нередко оказывается, что нахождение этого значения очень трудоёмко. Например, у(х) может быть определено как решение сложной задачи, в которой х играет роль параметра или у(х) измеряется в дорогостоящем эксперименте. При этом можно вычислить небольшую таблицу значений функции, но прямое нахождение функции при большом числе значений аргумента будет практически невозможно. Функция у(х) может участвовать в каких-либо физико-технических или чисто математических расчётах, где её приходится многократно вычислять. В этом случае выгодно заменить функцию у(х) приближённой формулой, то есть подобрать некоторую функцию j(х), которая близка в некотором смысле к у(х) и просто вычисляется. Затем при всех значениях аргумента полагают у(х)»j(х).

Большая часть  классического численного анализа  основывается на приближении многочленами, так как с ними легко работать. Однако для многих целей используются и другие классы функций.

Выбрав узловые  точки и класс приближающих функций, мы должны ещё выбрать одну определённую функцию из этого класса посредством  некоторого критерия — некоторой меры приближения или «согласия». Прежде чем начать вычисления, мы должны решить также, какую точность мы хотим иметь в ответе и какой критерий мы изберём для измерения этой точности.

Всё изложенное можно сформулировать в виде четырёх  вопросов:

Какие узлы мы будем использовать?

Какой класс  приближающих функций мы будем использовать?

Какой критерий согласия мы применим?

Какую точность мы хотим?

Существуют 3 класса или группы функций, широко применяемых  в численном анализе. Первая группа включает в себя линейные комбинации функций 1, х, х2, …, хn, что совпадает с классом всех многочленов степени n (или меньше). Второй класс образуют функции cos aix, sin aix. Этот класс имеет отношение к рядам Фурье и интегралу Фурье. Третья группа образуется функциями e-az. Эти функции встречаются в реальных ситуациях. К ним, например, приводят задачи накопления и распада.

Что касается критерия согласия, то классическим критерием  согласия является «точное совпадение в узловых точках». Этот критерий имеет преимущество простоты теории и выполнения вычислений, но также неудобство из-за игнорирования шума (погрешности, возникающей при измерении или вычислении значений в узловых точках). Другой относительно хороший критерий — это «наименьшие квадраты». Он означает, что сумма квадратов отклонений в узловых точках должна быть наименьшей возможной или, другими словами, минимизирована. Этот критерий использует ошибочную информацию, чтобы получить некоторое сглаживание шума. Третий критерий связывается с именем Чебышева. Основная идея его состоит в том, чтобы уменьшить максимальное отклонение до минимума. Очевидно, возможны и другие критерии. 

Более конкретно  ответить на поставленные 4 вопроса  можно лишь исходя из условий и  цели каждой отдельной задачи.

Интерполяция  многочленами

Цель задачи о приближении (интерполяции): данную функцию у(х) требуется приблизительно заменить некоторой функцией j(х), свойства которой нам известны так, чтобы отклонение в заданной области было наименьшим. интерполяционные формулы применяются, прежде всего, при замене графически заданной функции аналитической, а также для интерполяции в таблицах.

Методы интерполяции Лагранжа и Ньютона

Один из подходов к задаче интерполяции — метод  Лагранжа. Основная идея этого метода состоит в том, чтобы прежде всего  найти многочлен, который принимает значение 1 в одной узловой точке и 0 во всех других. Легко видеть, что функція является требуемым многочленом степени n; он равен 1, если x=xj и 0, когда x=xi, i¹j. Многочлен Lj(x)×yj принимает значения yi в i-й узловой точке и равен 0 во всех других узлах. Из этого следует, что  есть многочлен степени n, проходящий через n+1 точку (xi, yi).

Другой подход — метод Ньютона (метод разделённых  разностей). Этот метод позволяет  получить аппроксимирующие значения функции  без построения в явном виде аппроксимирующего полинома. В результате получаем формулу для полинома Pn, аппроксимирующую функцию f(x): 

P(x)=P(x0)+(x-x0)P(x0,x1)+(x-x0)(x-x1)P(x0,x1,x2)+…+ 

(x-x0)(x-x1)…(x-xn)P(x0,x1,…,xn); 

    —  разделённая разность 1-го порядка; 

    — разделённая разность 2-го порядка и т.д. 

Значения Pn(x) в  узлах совпадают со значениями f(x) 

Фактически формулы  Лагранжа и Ньютона порождают  один и тот же полином, разница  только в алгоритме его построения.

Сплайн-аппроксимация

Другой метод  аппроксимации — сплайн-аппроксимация — отличается от полиномиальной аппроксимации Лагранжем и Ньютоном. Сплайном называется функция, которая вместе с несколькими производными непрерывна на отрезке [a, b], а на каждом частном интервале этого отрезка [xi, xi+1] в отдельности являются некоторым многочленом невысокой степени. В настоящее время применяют кубический сплайн, то есть на каждом локальном интервале функция приближается к полиному 3-го порядка. Трудности такой аппроксимации связаны с низкой степенью полинома, поэтому сплайн плохо аппроксимируется с большой первой производной. Сплайновая интерполяция напоминает лагранжевую тем, что требует только значения в узлах, но не её производных.

Метод наименьших квадратов

Предположим, что  требуется заменить некоторую величину и делается n измерений, результаты которых равны xi=x+ei (i=1, 2, …, n), где ei — это ошибки (или шум) измерений, а х — истинное значение.Один из наиболее общих случаев применения этого метода состоит в том, что имеющиеся n наблюдений (xi, yi) (i=1, 2, …, n) требуется приблизить многочленом степени m 

В научном исследовании Экспериме́нт (от лат. experimentum — проба, опыт) — метод исследования причинных  связей среди переменных значений объектов. Эксперимент - краеугольный камень эмпирического  подхода в приобретении данных о мире и используется как в естественных науках, а также и в общественных. Спланированный эксперимент может также использоваться как подготовительное средство для решения практических проблем, помогает поддерОсновная масса людей в науке, технике, медицине и др. областях в положении учёного, инжененра, и, вообще, человека испытателя могут поставить эксперимент или проверить результат при использовании разных методов эксперимента: например, научного, чисто практического и т.д. Шаги — делают наблюдение, задают вопрос, формируют гипотезу, проверяют гипотезу, анализируют результаты, делают вывод, и результаты comunicate. Причина одна: вы проверяете гипотезу, так вы можете доказать ваше право в 100 % вопроса или определить недостоверность, неправоту. В конечном итоге полученный любой результат одинаково полезен.

Наиболее широко используются управляемые эксперименты в области социального эксперимента. Он звключается в целенаправленных изменениях сложившейся обстаовки  с целью, например, повышения производительности труда. Для проведения эксперимента выбирается трудовой коллектив, у которого сложилась определённая система труда, а также определённые трудовые отношения.

Cоциальный эксперимент  представляет метод, при котором  возможно получить инфрмацию количественных и качественных показателей трудовой деятельности управляемого социального объекта при помощи вводимых экспериментатором или используемых видоизменяемых существующих и контролируемых им новых компонентов.

Чтобы демонстрировать  причину и гипотезу эффекта, эксперимент должен часто показывать, что, например, явление происходит после того, как определенная обработка дается предмету, и что явление не происходит в отсутствии обработки. (См. Бэконовский метод.)

Стандартная кривая[править]

 Эксперимент, которым управляют, как правило сравнивает результаты, полученные от экспериментального образца с образцом контроля, который является фактически идентичным экспериментальному образцу. Как исключение, расматривается один аспект, когда ставится эксперимент с исключением одной независимой переменной. Хорошим примером может быть испытание препарата (см.Рис.1).

Надежное управление подтверждает, что основные условия  эксперимента были в состоянии произвести положительный результат, даже если ни один из фактических экспериментальных образцов не производит положительный результат. Отрицательный контроль демонстрирует полученный результат сути, когда тест не показывает измеряемый положительный результат; часто ценность отрицательного контроля рассматривают как «второстепенная» ценность, которая будет вычтена из испытательных типовых результатов. Иногда надежное управление поддверждает вид стандартной кривой.[3]

Социальные эксперименты[править]

Основная статья: Эксперимент (социальный)

Классический  пример социального эксперимента[править]

Показательным примером проведенного социального  эксперимента в области повышения  эффективности управления послужило  проведение под руководством известного американского социолога Э. Мэйо широко известных исследований в 1924-1932 гг. на Хоуторнских предприятиях в пригороде Чикаго (США).  

Учёный поставил своей изначальной целью определить зависимость между изменениями  интенсивности освещения производственных помещений и производительностью  труда (что получило название как  Хоуторнский эксперимент ). В результате первого этапа проведенного эксперимента оказалось много неожиданных результатов. Так с усилением освещенности производительность труда повышалась у рабочих экспериментальной группы, трудившихся в более освещенном помещении, однако, то в контрольной группе, где освещенность оставалась прежней, был отмечен тот же эффект. Со снижением освещенности выработка все равно продолжала расти как в экспериментальной, так и в контрольной группе.

На этой стадии эксперимента были сделаны два важных вывода:

Не существует прямой механической связи между  одной переменной в условиях труда  и производительностью;

Следует искать более важные, скрытые факторы  от исследователей, влияющие на трудовое поведение людей, включая производительность их труда.

На последующих  этапах проведения данного эксперимента в качестве независимой переменной (экспериментального фактора) применялись  различные условия:

температура помещения;

влажность;

увеличение материальных стимулов и т.п., вплоть до групповой сплоченности людей, включенных в эксперимент.

В дальнейшем выявились  еще два фактора:

во-первых, условия  труда воздействуют на трудовое поведение  индивидов не непосредственно, а  опосредовано, через так называемый "групповой дух", т.е. через их ощущения, восприятия, установки, через групповую сплоченность;

во-вторых, оказалось, что межличностные отношения  и групповая сплоченность в условиях производственной деятельности оказывают  благотворное влияние на эффективность  труда.

Огромная теоретическая  и методологическая значимость Хоуторнского эксперимента для дальнейшего развития социологии привела к необходимости:

Пересмотра роли и значимости материально-вещественных и субъективных, человеческих факторов в развитии производства;

Определения возможности  выявить не только открытые функции и их роль в производстве (в частности, роль материальных условий трудовой деятельности), но и скрытые функции, ранее ускользавшие от внимания исследователей и организаторов производства — это роль «группового духа»);

Информация о работе Математический анализ