Комплексные соединения

Автор работы: Пользователь скрыл имя, 14 Декабря 2009 в 18:50, Не определен

Описание работы

Введение
История развития учения о комплексных числах
Действия с комплексными числами
Геометрия комплексных чисел
Возведение в степень и извлечение корня из комплексного числа
Заключение
Список литературы

Файлы: 1 файл

komplex.doc

— 219.00 Кб (Скачать файл)

Исследовательская работа

                Выполнил:

                ученик 11 «А» класса

                Дударев Александр

                Руководитель:

                учитель высшей категории

                Поддельская В. Б 

СОДЕРЖАНИЕ 
 

Введение                 2

История развития учения о комплексных числах                     2

Действия с  комплексными числами        4

Решение уравнений  с комплексной переменной       7

Геометрия комплексных  чисел         7

Возведение в  степень и извлечение корня из комплексного числа              9

Заключение                       11

Список литературы                   12 
 
 
 
 
 
 
 
 
 
 
 

КОМПЛЕКСНЫЕ   ЧИСЛА

1

ВВЕДЕНИЕ

      Впервые я узнал о комплексных числах в 5-ом классе, когда, читая энциклопедию, натолкнулся на это словосочетание. Я заинтересовался и решил прочитать статью до конца. Из неё я узнал, что вообще представляют собой комплексные числа, как с ними работать, где они применяются. На этом моё первое знакомство с комплексными числами закончилось. Я вспомнил о них лишь тогда, когда мой преподаватель по математике предложила мне тему работы в Малой Академии Наук – комплексные числа. Я сразу же согласился. Мой интерес возрос ещё больше, когда я узнал много нового о комплексных числах. Вот результат моей работы над этой темой.

      Моей  целью являлось изучение комплексных  чисел как раздела математики, а также создание наглядного электронного пособия для учащихся старших классов и студентов первого курса технических ВУЗов.

      Я считаю, что моя тема актуальна, так  как хотя в наше время довольно много научной и учебной литературы, но далеко не во всех изданиях материал изложен ясно, понятно и доступно для учащихся.

      Задача, которую я ставил перед собой, – проведение мониторинга (исследования) по изучению темы "Комплексные числа" по данному учебному пособию среди учащихся 11 класса. 

2

ИСТОРИЯ РАЗВИТИЯ УЧЕНИЯ О КОМПЛЕКСНЫХ ЧИСЛАХ

      Для решения алгебраических уравнений недостаточно действительных чисел. Поэтому естественно стремление сделать эти уравнения разрешимыми, что в свою очередь приводит к расширению понятия числа. Например, для  того чтобы любое уравнение х + a = b имело корни, положительных чисел недостаточно и поэтому возникает потребность ввести отрицательные числа и нуль.

      Древнегреческие математики считали, что, a = с и b = a только натуральные числа, но в практических  расчетах за два тысячелетия до нашей эры в Древнем Египте и Древнем Вавилоне уже применялись дроби. Следующим важным этапом в развитии понятия о числе было введение отрицательных чисел – это было сделано китайскими математиками за 2  века до нашей эры. Отрицательные  числа применял в III веке нашей эры древнегреческий математик Диофант, знавший уже правила действий над ними, а в VII веке нашей эры эти числа подробно изучили индийские ученые, которые сравнивали такие числа с долгом. С помощью отрицательных чисел можно было единым образом описывать изменение величин. Уже в VIII веке нашей эры было установлено, что квадратный корень из положительного числа имеет два значение – положительное и отрицательное, а из отрицательных чисел квадратные корни извлечь нельзя: нет такого числа х, чтобы  х2 = - 9. В XVI веке в связи с изучением кубических уравнений оказалось необходимым извлекать квадратные корни из отрицательных чисел. В формуле для решения кубических уравнений содержатся кубические и квадратные корни. Эта формула безотказно действует в случае, когда уравнение имеет один действительный корень (например, для уравнения  х3 + 3х – 4 = 0), а если оно имело 3 действительных корня (например, х3 – 7х + 6 = 0),то под знаком квадратного корня оказывалось отрицательное число. Получалось, что путь к этим 3 корням уравнения ведет через невозможную операцию извлечения квадратного корня из отрицательного числа.

         Чтобы объяснить получившийся  парадокс, итальянский алгебраист Джироламо Кардано в 1545 г. предложил ввести числа новой природы. Он показал, что система уравнений х + у = 10, xy = 40 не имеющая решений во   множестве    действительных    чисел,    имеет    решение всегда х = 5 ± , у = 5 ± , нужно только условиться действовать над такими  выражениями  по  правилам  обычной   алгебры   и   считать, что = -a. Кардано называл такие величины  «чисто отрицательными» и даже «софистически отрицательными», считая их бесполезными, и стремился не применять их. В самом деле, с помощью таких чисел нельзя выразить ни результат измерения  какой-нибудь величины, ни изменение этой величины. Но уже в 1572 г. вышла книга итальянского алгебраиста Р. Бомбелли, в которой были установлены первые правила арифметических операций над такими числами, вплоть до извлечения из них кубических корней. Название  «мнимые числа» ввел в 1637 г. французский математик и философ Р. Декарт, а в 1777 г. один из крупнейших математиков XVIII века Л. Эйлер предложил использовать первую букву французского слова imaginaire («мнимый») для обозначения (мнимой единицы), т.е. i = , этот символ вошел во всеобщее  употребление благодаря К. Гауссу (1831 г).

        В течение XVII века продолжалось обсуждение арифметической природы мнимостей, возможности дать им геометрическое истолкование. Постепенно развивалась техника операций над комплексными числами. На рубеже XVII – XVIII веков была построена общая теория  корней   n-й  степени сначала   из  отрицательных,  а впоследствии и из любых комплексных чисел.

         В конце XVIII века французский математик Ж. Лагранж смог сказать, что математический анализ уже не затрудняют мнимые величины. С помощью комплексных чисел научились выражать решения линейных дифференциальных уравнений с постоянным коэффициентом. Такие уравнения встречаются, например, в теории колебаний   материальной   точки  в   сопротивляющейся среде.

        Я. Бернулли применил комплексные  числа для вычисления интегралов.    Хотя в течение XVIII века с помощью комплексных чисел были решены многие вопросы, в том числе и прикладные задачи, связанные с картографией, гидродинамикой и т. д., однако еще не было строго логического обоснования теории этих чисел. Поэтому французский ученый П. Лаплас считал, что результаты, получаемые с помощью мнимых чисел, - только наведение, приобретающие характер настоящих истин лишь после подтверждения прямыми доказательствами. В конце XVIII – начале XIX веков было получено геометрическое    истолкование    комплексных    чисел.      Датчанин Г. Вессель, француз Ж. Арган и немец К. Гаусс независимо друг от друга предложили изображать комплексное число z = a + bi точкой М (a, b) на координатной плоскости. Позднее оказалось, что еще удобнее изображать число не самой точкой М, а вектором ОМ, идущим в эту точку из начала координат. При таком истолковании сложению и вычитанию  комплексных чисел  соответствуют  эти  же операции над векторами.

          Геометрические истолкования  комплексных  чисел позволили определить многие  понятия, связанные с функциями комплексного переменного, расширило область их применения. Стало ясно, что комплексные числа полезны во многих вопросах, где имеют дело с величинами, которые изображаются векторами на плоскости: при изучении течения жидкости,  задач теории упругости,   в теоретической электротехнике.

          Большой вклад в развитие теории функций комплексной переменной внесли русские и советские ученые: Р.И. Мусхелишвили занимался ее приложениями к теории упругости, М.В. Келдыш и М.А. Лаврентьев – к аэродинамике и гидродинамике, Н. Н. Боголюбов  и  В.С. Владимиров – к проблемам квантовой теории поля. 

3

ДЕЙСТВИЯ  С КОМПЛЕКСНЫМИ ЧИСЛАМИ

          Я рассмотрел решение квадратного уравнения х2 + 1 = 0. Отсюда х2 = –1. Число х, квадрат которого равен –1, называется мнимой единицей и обозначается i. Таким образом, i2 = -1, откуда i = . Решение квадратного уравнения, например, х2 – 8х + 25 = 0, можно записать следующим образом: х =

= 4 = 4 = 4 ± =  4 3 = 4 ± 3i.

          Числа вида 4 + 3i и 4 – 3i называют комплексными числами. В общем виде комплексное число записывается a + bi, где a и b – действительные  числа, а i – мнимая единица. Число a называется действительной частью комплексного числа (Re, от фр. réele – «реальный», «действительный»), bi – мнимой частью этого числа (Im, от фр. imaginaire – «мнимый»), b – коэффициентом мнимой части комплексного числа.

      Комплексные числа равны, если равны их действительные части и коэффициенты мнимых частей: a + bi = c + di, если a = c, b = d.   Комплексное число равно нулю тогда, когда его действительная часть и коэффициент мнимой части равны нулю, т.е. z = a + bi = 0, если a = 0, b = 0.  Действительные числа являются частным случаем комплексных чисел. Если b = 0, то a + bi = a – действительное  число. Если a = 0, b ≠ 0, то a + bi = bi – чисто мнимое число. Также на множестве комплексных чисел теряются понятия "больше" и "меньше", можно лишь по отдельности сравнивать действительные и мнимые части комплексных чисел. 

Комплексно-сопряжённые  числа. Сопряжёнными числами называют числа, действительные части которых равны, а мнимые отличаются знаком. Сопряжённое комплексному числу z обозначают  z.

      Произведением и суммой сопряжённых чисел являются действительные числа:

(a + bi) + (a – bi) = 2a,

(a + bi) ∙ (a – bi) = a2 + b2.

      Позже, когда была предложена геометрическая интерпретация комплексных чисел, возникла необходимость введения нового понятия – длины вектора, соответствующего комплексному числу. Его стали называть модулем комплексного числа и обозначать:

      

по предложению  швейцарского математика Жана Аргана.

Самостоятельно  изучив пример ,  я пришёл к выводу, что и сумма корней двух сопряжённых чисел равна действительному числу. Действительно, обозначив конечный результат за x и учитывая, что обе части неотрицательны, я имею право возвести выражение в квадрат:

Раскрыв скобки и выполнив возможные действия в левой части, я получил:

. Т.е. 

Так как  a и b – действительные числа, то и это выражение будет действительным. Я доказал это на примере:

. Возведя в квадрат, я получил:

.

Т.е. = .

 

Сложение  комплексных чисел. Суммой двух комплексных чисел            z1 = a + bi и z2 = c + di называется комплексное число z = (a + c) + (b + d)i. Для комплексных чисел справедливы переместительный и сочетательный законы сложения. Их справедливость следует из того, что сложение комплексных чисел по существу сводится к сложению действительных частей и коэффициентов мнимых частей, а они являются   действительными   числами,   для   которых  справедливы  указанные законы.  

Вычитание комплексных чисел определяется как действие, обратное  сложению:  разностью  двух  комплексных  чисел   a + bi  и c + di называется комплексное число х + yi, которое в сумме с вычитаемым дает уменьшаемое. Отсюда, исходя из определения сложения и равенства комплексных чисел, получим два уравнения, из которых найдем, что х = a – c, у = b – d. Значит,

(a + bi) – (c + di) = (a – c) + (b – d)i. 

Произведение комплексных чисел z1 = a + bi и z2 = c + di называется комплексное число z = (ac – bd) + (ad + bc)i, z1z2 = (a + bi) ∙ (c + di) = (ac – bd) + + (ad + bc) i.   Легко  проверить,   что  умножение  комплексных чисел можно выполнять  как  умножение  многочленов с заменой i2 на –1. Для умножения комплексных чисел также справедливы переместительный и сочетательный законы, а также распределительный  закон  умножения  по  отношению  к сложению. 

Деление комплексных чисел, кроме деления на нуль, определяется как действие, обратное умножению. Конкретное правило деления получим, записав частное в виде дроби и умножив числитель и знаменатель этой дроби на число, сопряженное со знаменателем:

Или короче: . 

Степень числа i является периодической функцией с периодом 4. Я доказал это утверждение: i3 = i2 ∙ i = (– 1) i = – i; i4 = i3 ∙ i = (– i) i = – i2 = – (– 1) = 1; i5 =

Информация о работе Комплексные соединения