Автор работы: Пользователь скрыл имя, 24 Января 2011 в 23:40, реферат
Введение комплексных чисел было связано с открытием решения кубического уравнения, т.е. ещё в 16 веке.
И до этого открытия при решении квадратного уравнения x2 + + = px приходилось сталкиваться со случаем, когда требовалось извлечь квадратный корень из (p/2)2 - q, где величина (p/2)2 была меньше, чем q. Но в таком случае заключали, что уравнение не имеет решений. О введении новых (комплексных) чисел в это время (когда даже отрицательные числа считались “ложными”) не могло быть и мысли. Но при решении кубического уравнения по правилу Тартальи оказалось, что без действий над мнимыми числами нельзя получить действительный корень.
История развития комплексных
чисел
1. История развития комплексных чисел
Введение
И до этого открытия
при решении квадратного
Теория
2 .О комплексных числах.
Всвязи с
Комплексное
“Мнимые” числа
(когда а = 0). С другой
стороны, и действительные
Действительное
a + bi. Основное свойство числа i состоит в том, что произведе-
ние i*i равно –1, т.е.
Долгое время не
удавалось найти такие
Оставим в стороне вопрос о геометрическом или физическом смысле числа i, потому что в разных областях науки этот смысл различен.
Правило каждого
действия над комплексными
3. Соглашение о комплексных числах.
П р и м е р ы. Запись 3 + 0i обозначает то же, что запись 3. Запись –2 + 0i означает –2.
a = a’, b = b’. В противном случае комплексные числа не равны. Это определение подсказывается следующим соображением. Если бы могло существовать, скажем, такое равенство:
2 + 5i = 8 + 2i, то по правилам алгебры мы имели бы i = 2, тогда как i не должно бать действительным числом.
З а м е ч а н и е. Мы еще не определили, что такое с л о ж е н и е комплексных чисел. Поэтому, строго говоря, мы ещё не в праве утверждать, что число 2 + 5i есть сумма чисел 2 и 5i. Точнее было бы сказать, что у нас есть пара действительных чисел: 2 (абсцисса) и 5 (ордината); эти числа порождают число нового рода, условно обозначаемое 5 + 7i.
О п р е д е л е н и е. Суммой комплексных чисел a + bi и a’ + b’i называют комплексное число (a + a’) + (b + b’)i.
Это определение подсказывается правилами действий с обачными многочленами.
Пример 1. (-3 + 5i) + (4 – 8i) = 1 - 3i
Пример 2. (2 + 0i) + (7 + 0i) = 9 + 0i. Так как запись 2 + 0i означает то же, что и 2 и т. д., то наполненное действие согласуется с обычной арифметикой (2 + 7=9).
Пример 3. (0 + 2i) + (0 + 5i) = 0 + 7i, т. е. 2i + 5i = 7i
Пример 4. (-2 + 3i) + ( - 2 – 3i) = - 4
В примере 4 сумма двух комплексных чисел равна действительному числу. Два комплексных числа a+bi и a-bi называются сопряженными. Сумма сопряженных комплексных чисел равна действительному числу.
З а м е ч а н и е. Теперь, когда действие сложения определено, мы имеем право рассматривать комплексное число a + bi как сумму чисел a и bi. Так, число 2 и число 5i в сумме дают число 2 + 5i.
О п р е д е л е н и е. Разностью комплексных чисел a + bi (уменьшаемое) и a’ + b’i (вычитаемое) называется комплексное число (a – a’) + (b – b’)i.
Пример 1. (-5 + 2i) – (3 – 5i) = -8 + 7i
Пример 2. (3 + 2i) – (-3 + 2i) = 6 + 0i = 6
Определение
О п р е д е л е н и е. Произведением комплексных чисел a + bi и a’ + b’i называется комплексное число
З а м е ч а н и е 1. Равенство i2 = -1 до установленного правила умножения комплексных чисел носило характер требования. Теперь оно вытекает из определения. Ведь запись i 2 , т. е. i*i, равнозначна записи (0 + 1*i)(0 + 1*i). Здесь a = 0, b = 1, a’ = 0, b’ = 1 Имеем aa’ – bb’ = -1, ab’ + ba’ = 0, так что произведение есть –1 + 0i, т. е. –1.
З а м е ч а н и е 2. На практике нет нужды пользоваться формулой произведения. Можно перемножить данные числа, как двучлены, а затем положить, что i2 = -1.
Пример 1. (1 – 2i)(3 + 2i) = 3 – 6i + 2i – 4i 2 = 3 – 6i + 2i + 4 = 7 – 4i.
Пример 2. (a + bi)(a – bi) = a2 + b 2
Пример 2 показывает, что произведение сопряженных комплексных чисел есть действительное и притом положительное число.
Всоответсвии с определением деления действительных чисел устанавливается следующее определение.
О п р е д л е н и е. Разделить комплексное число a + bi на комплексное число a’ + b’i – значит найти такое число x + yi, которое, будучи помножено на делитель, даст делимое.
Если делитель
Пример 1. Найти частное (7 – 4i):(3 + 2i).
Записав дробь (7 – 4i)/(3 + 2i), расширяем её на число 3 – 2i, сопряженное с 3 + 2i. Получим:
((7 – 4i)(3 - 2i))/((3 + 2i)(3 – 2i)) = (13 – 26i)/13 = 1 – 2i.
Пример 1 предудущего параграфа даёт проверку.
Пример 2. (-2 +5i)/(-3 –4i) = ((-2 + 5i)(-3 – 4i))/((-3 – 4i)( -3 + 4i)) = (-14 –23i)/25 = -0,56 – 0.92i.
Проступая, как в примерах 1 и 2, найдем общую формулу:
Чтобы доказать, что правая часть действительно является частным, достаточно помножить её на a’ + b’. Получим a + bi.
З а м е ч а н и е 1. Формулу (1) было бы принять за определение деления.
З а м е ч а н и е 2. Формулу (1) можно вывести ещё следующим образом. Согласно определению, мы должны иметь: (a’ + b’i)(x + yi) = a + bi. Значит, должны удовлетворяться следующие два уравнения:
Эта система имеет единственное
решение:
если a’/b’ = -b’/a’, т. е. если a’2 + b’2 = 0.
Остается
7. Геометрическое изображение
Действительные
отрезками ОА,ОВ, учитывая не только их длину, но и направление.
Каждая точка М “числовой прямой” изображает некоторое действительное число (рациональное, если отрезок ОМ соизмерим с единицей длины, и иррациональное, если несоизмерим ). Таким образом, на числовой прямой не остаётся места для комплексных чисел.
Но комплексные
=QM) равна абсциссе а комплексного, а ордината у (OQ=РM) равна ординате b комплексного числа.
П р и м е р ы. На фиг. 3 точка А с абсциссой х=3 и ординатой у=5 изображает комплексное число 3 + 5i. Точка В изображает комплексное число –2 + 6i; точка С – комплексное число – 6 – 2i; точка D – комплексное число 2 – 6i.
Действительные числа ( в комплексной форме они имеют вид a + 0i) изображают точками оси Х, а чисто мнимые – точками оси У.
П р и м е р ы. Точка К на фиг. 3 изображает действительное число 6, точка L – чисто мнимое число 3i; точка N – чисто мнимое число – 4i . Начало координат изображают число 0.