Геометрический смысл комплексных чисел. Алгебраические действия над ними

Автор работы: Пользователь скрыл имя, 06 Октября 2015 в 16:30, курсовая работа

Описание работы

Алгебраические уравнения с одним неизвестным и связанные с ним вопросы в нахождении решений относятся к числу наиболее важных в программе. В общем виде изучаются лишь уравнения 1-ой степени (линейные) и уравнения 2-ой степени (квадратные), поскольку для таких уравнений существуют простые формулы, выражающие корни уравнения через его коэффициенты с помощью арифметических операций и извлечения корней.

Содержание работы

Введение…………………………………………………………………… 3
1.История возникновения комплексных чисел…………………………...5
2.Геометрический смысл комплексных чисел. Алгебраические действия над ними…………………………………………………………………………10
2.1. Основные понятия и арифметические действия над комплексными числами……………………………………………………………………...10
2.2 Геометрическое изображение комплексных чисел. Тригонометрические действия над ними………………………………………………………….12
2.3. Операция сопряжения комплексных чисел………………………….14
2.4. Извлечение корня из комплексного числа…………………………. .15
2.5. Геометрический смысл алгебраических операций…………………..15
2.6. Умножение комплексных чисел в тригонометрической форме……16
2.7. Деление комплексных чисел в тригонометрической форме……… .16
2.8.Возведение в целую степень комплексного числа, записанного в тригонометрической форме………………………………………………. .17
2.9. . Извлечение корня n-ой степени из комплексного числа, записанного в тригонометрической форме………………………………………………...17
3. Применение комплексных чисел к решению алгебраических уравнений 3-ей и 4-ой степеней…………………………………………………………...18
4.Дополнительные задачи и упражнения, связанные с использованием комплексных чисел………………………………………………………….20
5.Заключение………………………………………………………………...22
6. Использованная литература…