Автор работы: Пользователь скрыл имя, 09 Марта 2011 в 21:59, курсовая работа
Данная курсовая работа посвящена рассмотрению моделей динамического программирования. Динамическое программирование в широком смысле представляет собой оптимальное управление процессом, посредством изменения управляемых параметров на каждом шаге, и, следовательно, воздействуя на ход процесса, изменяя на каждом шаге состояние системы.
Введение 3
1 Теоретическая часть. Модели динамического программирования 4
1.1 Предмет динамического программирования 4
1.2 Постановка задачи динамического программирования 6
1.3 Принцип оптимальности и математическое описание динамического процесса управления 8
1.4 Оптимальное распределение инвестиций 10
1.5 Выбор оптимальной стратегии обновления оборудования 13
2 Расчетная часть 16
Заключение 30
Список использованных источников 31
На этой основе можно записать уравнение, которое позволяет рекуррентно вычислить функции Беллмана, опираясь на результаты предыдущего шага. Для каждого варианта управления доход определяется как сумма двух слагаемых: непосредственного результата управления и его последствий.
Если в начале каждого года сохраняется оборудование, возраст которого t лет, то доход за этот год составит r(t). К началу (k+1)-го года возраст оборудования достигнет (t+1) и максимально возможный доход за оставшиеся годы (с (k+1)-го по n-й) составит Fk+1(t+1). Если в начале k-го года принято решение о замене оборудования, то продается старое оборудование возраста t лет по цене S(t), приобретается новое за P единиц, а эксплуатация его в течение k-го года нового оборудования принесет прибыль r(0). К началу следующего года возраст оборудования составит 1 год и за все оставшиеся годы с (k+1)-го по n-й максимально возможный доход будет Fk+1(1). Из двух возможных вариантов управления выбирается тот, который приносит максимальный доход.
Функция Fk(t) вычисляется на каждом шаге управления для всех 1 ≤ t ≤ t0 + k – 1. Управление при котором достигается максимум дохода, является оптимальным.
Значения функции Fn(t), определяемые Fn-1(t), Fn-2(t) вплоть до F1(t). F1(t0) представляют собой возможные доходы за все годы. Максимум дохода достигается при некотором управлении, применяя которое на первом году, мы определяем возраст оборудования к началу второго года. Для данного возраста оборудования выбирается управление, при котором достигается максимум дохода за годы со второго по n-й и так далее. В результате на этапе безусловной оптимизации определяются годы, в начале которых следует произвести замену оборудования.
2 РАСЧЕТНАЯ ЧАСТЬ
Построение оптимальной последовательности операций в коммерческой деятельности
Пример
Пусть на оптовую базу «Ларес» прибыло 10 машин с товаром для разгрузки и 8 машин для загрузки товаров, направляемых в магазины. Материально-ответственное лицо оптовой базы осуществляет оформление документов по операциям разгрузки или загрузки для одной машины, а затем переходит к обслуживанию другой машины. Известны затраты по выполнению каждой операции, которые показаны на ребрах графа (рис. 2). Издержки от операций обусловлены простоем транспорта, типом операции (прием или отправка товара) и не зависят от конкретной машины. Необходимо спланировать последовательность операций обоих видов таким образом, чтобы суммарные издержки по приему и отправке товаров для всех машин были минимальными.
Решение:
Из условия следует, что состояние экономической системы характеризуется двумя параметрами: количеством принятых и оформленных машин по разгрузке товара и количеством машин, отправленных с товаром в магазины. Поэтому решение будем искать на плоскости X0Y, на ограниченном прямыми прямоугольнике, который является областью допустимых состояний системы. Если по оси X отложить число (10) разгруженных машин, а по оси Y – число (8) загруженных товаром машин, то можно построить на плоскости граф состояний процесса, в котором каждая вершина характеризует состояние операции приема и отгрузки товара на оптовой базе. Ребра этого графа означают выполнение работы по приему или отправке товара на очередной машине. Каждому ребру можно сопоставить издержки, связанные с выполнением операции по разгрузке или загрузке машины.
Точка S0 определяет начало процесса, a S1 – конечное состояние, соответствующее приему и отправке всех машин. Оптимизацию процесса будем производить с конечного состояния S1. Весь процесс разобьем на шаги, их количество k = n + m = 10 + 8 = 18. Каждый шаг представляет собой сечение графа состояний, проходящее через вершины (на рис. 2 сечения показаны косыми линиями).
К=18 К=17 К=16 К=15 К=14 К=13 К=12 К=11 К=10 К=9
Рисунок
2 – Графическая
схема связи операций
I этап. Условная оптимизация.
1-й шаг. k = 1. На первом шаге, с задаваемым сечением А1В1, из состояний А1 и B1 возможен только один вариант перехода в конечное состояние S1. Поэтому в вершинах А1 и B1 записываем соответственно издержки 13 и 10. Ребра A1S1 и B1Sl обозначаем стрелкой, направленной в вершину S1, как показано на рис. 3.
Рисунок
3 – Сетевая
модель операции, шаг 1
2-й шаг. k = 2. Второй шаг оптимизации задается сечением по вершинам А2, В2, C1. Из состояний А2 и C1 возможен единственный переход в вершины А1 и B1 соответственно, поэтому в вершинах А2 и C1 записываем суммарные издержки 29 и 28 на первых двух шагах перехода в конечное состояние S1.
Из вершины В2 возможны два варианта перехода: в вершину А1 или вершину B1. При переходе В2 → А1 сумма издержек составляет 11 + 13 = 24, на переходе В2 → В1 сумма составляет 15 + 10 = 25. Из двух вариантов суммарных издержек выбираем наименьшую (24) и обозначаем стрелкой условно оптимальный переход В2 → А1, как показано на рис. 4.
Рисунок
4 – Сетевая
модель операции, шаг 2
3-й шаг. k = 3. На третьем шаге сечение проходит через вершины А3, В3, С2, D1. Из вершин А3 и D1 возможен единственный переход в вершины А2 и С1 соответственно. Суммарные издержки для состояния D1 равны 28 + 19 = 47; для состояния А3: 29 + 20 = 49. Из вершины В3 возможны два варианта перехода: в вершину А2 издержки равны 29 + 9 = 38; в вершину В2 – 13 + 24 = 37.
Для вершины С2 возможен переход в вершину В2 (21 + 24 = 45) и в вершину С1 (18 + 28 = 46). Выбираем для вершин В3 и С2 наименьшие суммарные издержки и обозначаем стрелкой условно оптимальный переход, как показано на рис. 5.
Рисунок
5 – Сетевая
модель операции, шаг 3
4-й шаг. k = 4. Четвертый шаг оптимизации задается сечением по вершинам А4, В4, C3, D2, Е1. Из состояний А4 и Е1 возможен единственный переход в вершины А3 и D1 соответственно, поэтому в вершинах А4 и Е1 записываем суммарные издержки:
А4А3: 18 + 49 = 67
Е1D1: 18 + 47 = 65.
Вершина В4: В4А3: 10 + 49 =59
В4В3: 13 + 37 = 50.
Вершина С3: С3В3: 20 + 37 =57
С3С2: 21 + 45 = 66.
Вершина D2: D2С2: 19 + 45 =64
D2D1: 11 + 47 = 58.
Рисунок
6 – Сетевая
модель операции, шаг 4
5-й шаг. k = 5. На пятом шаге сечение проходит через вершины А5, В5, С4, D3, Е2, F1. Из вершин А5 и F1 возможен единственный переход в вершины А4 и Е1 соответственно:
А5А4: 15 + 67 = 82
F1Е1: 16 + 65 = 81.
Вершина В5: В5А4: 13 + 67 =80
В5В4: 12 + 50 = 62.
Вершина С4: С4В4: 18 + 50 = 68
С4С3: 12 + 57 = 69.
Вершина D3: D3С3: 18 + 57 = 75
D3D2: 11 + 58 = 69.
Вершина Е2: Е2D2: 16 + 58 = 74
Е2Е1: 15 + 65 = 80.
Рисунок
7 – Сетевая
модель операции, шаг 5
6-й шаг. k = 6. Шестой шаг оптимизации задается сечением по вершинам А6, В6, C5, D4, Е3, F2, G1. Из состояний А6 и G1 возможен единственный переход в вершины А5 и F1 соответственно, поэтому в вершинах А6 и G1 записываем суммарные издержки:
А6А5: 13 + 82 = 95
G1F1: 10 + 81 = 91.
Вершина В6: В6А5: 14 + 82 =96
В6В5: 15 + 62 = 77.
Вершина С5: С5В5: 10 + 62 = 72
С5С4: 12 + 68 = 80.
Вершина D4: D4С4: 16 + 68 = 84
D4D3: 12 + 69 = 81.
Вершина Е3: Е3D3: 15 + 69 = 84
Е3Е2: 14 + 74 = 88.
Вершина F2: F2Е2: 15 + 74 = 89
F2F1: 12 + 81 = 93.