Автор работы: Пользователь скрыл имя, 18 Февраля 2011 в 05:52, курсовая работа
Рассмотрено простейшее уравнение гиперболического типа – волновое уравнение. К исследованию этого уравнения приводят рассмотрение процессов поперечных колебаний струны, продольных колебаний стержня, электрических колебаний в проводе, крутильных колебаний вала, колебаний газа и т. д. Приведена формула Даламбера для решения краевых задач, а также её физическая интерпретация.
1.Введение.
2.Метод распространяющихся волн.
1.Вывод уравнения колебаний струны.
2.Формула Даламбера.
1.Вывод формулы Даламбера.
2.Физическая интерпретация.
3.Пример.
3.О колебании стержней.
1.Уравнение поперечных колебаний стержней.
2.Задача о собственных значениях.
3.Частоты собственных колебаний камертона.
4.Заключение.
5.Литература.
Функция отлична от нуля только в области II, где и характеристики и представляют передний и задний фронты распространяющейся направо волны.
Рассмотрим теперь некоторую фиксированную точку и приведем из нее обе характеристики и , которые пересекут ось x в точках , t=0 и , t=0. Значение функции в точке равно , т. е. определяется значениями функций и в точках и , являющихся вершинами треугольника MPQ (рис. 3, б), образованного двумя характеристиками и осью x. Этот треугольник называется характеристическим треугольником точки . Из формулы (10) видно, что отклонение точки струны в момент зависит только от значений начального отклонения в вершинах P(x0-at0,0) и Q(x0+at0,0) характеристического треугольника MPQ и от значений начальной скорости на стороне PQ. Это становится особенно ясным, если формулу (10) записать в виде
(11)
Начальные данные, заданные вне PQ, не оказывают влияния на значения в точке . Если начальные условия заданы не на всей бесконечной прямой, а на отрезке , то они однозначно определяют решение внутри характеристического треугольника, основанием которого является отрезок .
2.2.3. Пример.
Решение (10) можно представить в виде суммы , где
(12)
. (13)
Если начальная скорость равна нулю ( ), то отклонение есть сумма левой и правой бегущих волн, причем начальная форма обеих волн определяется функцией , равной половине начального отклонения. Если же , то представляет возмущение струны, создаваемое начальной скоростью.
Рассмотрим распространение начального отклонения, заданного в виде равнобедренного треугольника. Такой начальный профиль можно получить, если оттянуть струну в середине отрезка . На рис. 4 даны последовательные положения струны через промежутки времени .
Наглядное представление о характере процесса распространения можно получить с помощью фазовой плоскости (x, t). Проведем характеристики через точки и ; они разобьют полуплоскость на шесть областей (рис. 5).
Отклонение
в любой точке (x,t) дается формулой
(12). Поэтому в областях I,
III, V отклонение равно нулю, так как характеристический
треугольник любой точки из этих областей
не имеет общих точек с отрезком
, на котором заданы начальные условия.
В области II решением является «правая
волна»
, в области IV – «левая волна»
, а в области VI решение есть сумма «левой»
и «правой» волн.
3. О колебании стержней.
В курсах методов математической физики основное место отводится уравнениям второго порядка. Однако большое число задач о колебаниях стержней, пластин и т.д. приводит к уравнениям более высокого порядка.
В качестве примера на уравнения 4-го порядка рассмотрим задачу о собственных колебаниях камертона, эквивалентную задаче о колебаниях тонкого прямоугольного стержня, зажатого одним концом в массивные тиски. Определение формы колебаний камертона и его частоты сводится к решению «уравнения поперечных колебаний стержня»
К этому уравнению приходят во многих задачах о колебании стержней, при расчете устойчивости вращающихся валов, а также при изучении вибрации кораблей.
Приведем элементарный вывод уравнения (1). Рассмотрим прямоуголный стержень длиной , высотой h и шириной b. Выделим элемент длины dx. После изгиба торцевые сечения выделенного элемента стержня, предполагаемые плоскими, образуют угол , Если деформации малы, а длина оси стержня при изгибе не меняется (dl=dx), то
Слой материала, отстоящий от оси стержня y=0 на расстоянии , изменяет свою длину на величину . По закону Гука сила натяжения, действующая вдоль слоя, равна
где E – модуль упругости материала стержня. Полный изгибающий момент сил, действующих на сечение x, равен
, (2)
где
- момент
инерции прямоугольного
Избыточный момент –dM уравновешивается моментом тангенциальных сил
Отсюда в силу равенства (2) получаем величину тангенциальной силы
. (3)
Приравняв действующую на элемент результирующую силу
произведению массы элемента на ускорение
где - плотность стержня, S – площадь поперечного сечения (при этом мы пренебрегаем вращательным движением при изгибе), получаем уравнение поперечных колебаний стержня
( ). (1)
Граничными
условиями для заделанного
,
.
На свободном конце должны равняться нулю изгибающий момент (2) и тангенциальная сила (3), откуда следует, что
,
.
Для того чтобы полностью определить движения стержня, нужно еще задать начальные условия – начальное отклонение и начальную скорость
, ( ). (6)
Таким образом, задача сводится к решению уравнения (1) с граничными условиями (4), (5) и с начальными условиями (6).
Будем решать задачу методом разделения переменных, полагая
y=Y(x)T(t).
Подставляя предлагаемую форму решения в (1), имеем:
Для функции Y(x) получаем задачу о собственных значениях
,
, , , . (9)
Общее решение уравнения (8) представляется в виде
Из условий Y(0)=0, Y’(0)=0 находим C=-A, D=-B. Отсюда следует, что
Условия Y’’(l)=0 и Y’’’(l)=0 дают:
Эта однородная система имеет нетривиальные решения A и B, если определитель системы равен нулю. Приравнивая этот определитель нулю, получаем трансцендентное уравнение для вычисления собственных значений
Так как , то это уравнение можно записать в идее
( ). (10)
Корни уравнения (10) без труда вычисляются, например, графически
Последняя формула дает значение с точностью до трех десятичных знаков, начиная с n=3, и с точностью до шестого знака для .
Рассмотрим теперь частоты колебаний камертона. Уравнению
Удовлетворяют тригонометрические функции
с частотой
Частоты собственных колебаний относятся как квадраты . Так как
То второй собственный тон выше основного тона более чем на две с половиной октавы, т.е. выше шестой гармоники струны при равном основном тоне, третье же собственное колебание выше основного тона более чем на четыре октавы. Например, если камертон имеет основную частоту в 440 колебаний в секунду (принятый стандарт a’ – ноты ля первой октавы), то следующая собственная частота камертона будет 2757,5 колебания в секунду (между c’’’’ =2637,3 и f’’’’=2794,0 – между нотами ми и фа четвертой октавы равномерно-темперированной гаммы), третья же собственная частота в 7721,1 колебания в секунду уже выходит за пределы шкалы собственно музыкальных звуков.
При
возбуждении колебаний
4. Заключение.
Дифференциальные уравнения с частными производными широко применяются в математической физике. В качестве примера в данной работе рассмотрены два уравнения.
Волновое уравнение с краевыми условиями можно свести к решению формулы Даламбера, задающуюся начальными условиями. И с помощью фазовой плоскости можно отследить характер его решения.
В
процессе решения «уравнения поперечных
колебаний стержня» получаем задачу о
собственных значениях и задачу о нахождение
частот собственных колебаний. Причем
частоты собственных колебаний относятся
как квадраты собственных значений.
5. Литература.
Информация о работе Дифференциальные уравнения гиперболического типа