Изучение покупательского спроса на продукцию фирмы
Автор работы: Пользователь скрыл имя, 17 Марта 2015 в 01:25, курсовая работа
Описание работы
В данной курсовой работе рассмотрены вопросы изучения покупательского спроса на продукцию фирмы. Рыночный спрос – это общий объем продаж на определенном рынке (частном или совокупном) определенной марки товара или совокупности марок товара за определенный период времени. Для его определения проводятся маркетинговые исследования. Спрос является основным фактором, определяющим развитие фирмы. Результаты маркетинговых исследований предназначены для принятия решений в области сегментирования рынка, разработки комплекса маркетинга и его отдельных инструментов, конкурентоспособности товара и фирмы.
Содержание работы
Введение.......................................................................3 Часть 1.Значение изучения покупательского спроса на современном этапе развития рынка........................................................................ .......................................................................... 3 1.1.Классификация рынков.......................................................3 1.2.Виды рыночного спроса......................................................5 Часть 2. Методы изучения спроса................................................6 2.1.Подходы к изучению рынков..................................................6 2.2.Оценка текущего спроса.....................................................8 2.3.Общая характеристика методов прогнозирования, применяемых в маркетинговых исследованиях................................................................ ..................................................... 9 2.4.Прогнозирование спроса, основанное на методах математической статистики........ 11 2.5.Краткая характеристика экспертных методов.................................15 Часть 3. Маркетинговые исследования товара....................................18 2.1.Исследование выпускаемых марок товаров....................................18 3.2.Изучение нового товара....................................................19 3.3.Исследование факторов успеха нового товара................................21 Часть 4. Использование материалов по изучению спроса в принятии маркетинговых решений...................................................................... ........................................................... 22 4.1.Определение направлений совершенствования моделей легковых автомобилей...... 22 4.1.1.Постановка проблемы и подходы к ее решению.......................22 4.1.2.Методика проведения исследования.................................23 4.1.3.Исследование стоимостных характеристик легкового автомобиля. ................. 24 4.1.4.Оценка эскизных вариантов новых легковых автомобилей.............25 4.1.5.Моделирование рынка и составление прогноза выпуска автомобилей. .............. 25 4.2.Определение емкости рынка на домашние настенные микрооранжереи............26 4.2.1.Постановка задач исследования....................................26 4.2.2.Информация о респондентах........................................27 4.2.3.Результаты интервьюирования......................................28 4.2.4.Выводы по исследованию...........................................30 Заключение....................................................................31 Список литературы....................................
Файлы: 1 файл
связей, используемая разными экспертами,
может быть различной, то при
использовании экономико-математических
методов структура моделей
устанавливается и проверяется экспериментально,
в условиях, поддающихся
объективному наблюдению и измерению.
Определение системы факторов и причинно-следственной
(казуальной) структуры
исследуемого явления – исходная точка
экономико-математического
моделирования.
На самом деле все эти методы являются
взаимодополняющими. Эффективная
прогнозная система должна обеспечить
возможность использования любого из
этих
методов.
Примером сложной задачи прогнозирования,
которая не решается с помощью
какого-то одного метода, является прогнозирование
объема продаж нового
товара. При проведении маркетинговых
исследований оцениваются объемы продаж
нового товара в течение первых лет (скажем
трех) после выпуска. Для этой цели
могут быть применены экспертные методы,
методы опросов, проведение продаж на
контрольном рынке.
Экспертные оценки, сформулированные
специалистами по маркетингу, базируются
на сведениях, собранных на стадии предварительного
анализа и учитывающих
данные о продажах конкурентов, размере
потенциального рынка, общем спросе,
долях продуктов различных марок на рынке,
доступности сбытовых сетей и др.
Недостающая информация собирается путем
прямых опросов потенциальных
пользователей, торговцев, поставщиков
и, если это возможно, конкурентов.
Проверка рынка, или контрольная продажа,
в ходе которой наблюдается реальное
рыночное поведение покупателей, позволяет
оценить уровень пробных и повторных
закупок и объем потенциальных продаж
нового товара. Можно также провести
пробные продажи по месту жительства
или эксперименты в специальных
лабораториях-магазинах.
Данные методы обычно применяются совместно.
Используя любой из перечисленных
или какой-либо иной подход, служба маркетинга
должна установить перспективный
объем продаж нового товара, на основе
которого разрабатываются стратегии
запуска товара.
Ясно, что в условиях сильно изменчивой
внешней среды интуиция и воображение
способны стать важными инструментами
восприятия реальности, дополняя
количественные подходы, которые, по
определению, опираются только на
наблюдаемые факторы. С другой стороны,
понятно, что чисто качественному
методу также присущи значительные погрешности
и что интуиция должна в
возможно большей степени проверяться
с помощью доступных фактов и знаний.
Таким образом, следует обеспечить совместное
использование этих двух
подходов.
Что касается прогнозирования спроса,
то в методологически правильной
постановке – это искусство оценки будущего
спроса при предположении об
определенном поведении покупателей
в заданных условиях. Прогнозирование
спроса в данном случае должно осуществляется
в три этапа. Вначале
разрабатывается прогноз внешней среды,
затем – прогноз развития данной
отрасли, наконец, разрабатывается прогноз
величины спроса на товары
конкретной компании. Такие комплексные,
тем более аналитические модели,
разработать и реализовать чрезвычайно
сложно, поэтому на практике получили
применение более простые статистические
модели.
Все прогнозы объема продаж строятся
на использовании трех видов информации,
полученных на основе изучения: что люди
говорят, что люди делают, и что люди
сделали. Получение первого вида информации
основывается на изучении мнения
потребителей и покупателей, торговых
агентов и посредников. Здесь
используются методы социологических
исследований и экспертные методы.
Изучение того, что люди делают, предполагает
проведение тестирования рынка.
Изучение того, что люди сделали, предполагает
анализ статистических данных о
сделанных ими покупках.
Обычно в данном случае речь идет о прогнозировании
на основе статистических
данных по объему продаж для конкретной
компании или конкретного рынка
величины текущего рыночного спроса
на определенный товар. В литературе, в
которой приводятся результаты использования
тех или иных статистических
моделей, очень часто не делается различия
между различными видами спроса, и
его прямым образом отождествляют с объемом
продаж.
2.4.Прогнозирование
спроса, основанное на методах математической
статистики.
Можно выделить два метода разработки
прогнозов, основанных на методах
математической статистики: экстраполяцию
и моделирование.
В первом случае в качестве базы прогнозирования
используется прошлый опыт,
который пролонгируется на будущее. Делается
предположение, что система
развивается эволюционно в достаточно
стабильных условиях. Чем крупнее
система, тем более вероятно сохранение
ее параметров без изменения, конечно,
на срок не слишком большой. Обычно рекомендуется,
чтобы срок прогноза не
превышал одной трети длительности исходной
временной базы.
Во втором случае строится прогнозная
модель, характеризующая зависимость
изучаемого параметра от ряда факторов,
на него влияющих. Она связывает
условия, которые, как ожидается, будут
иметь место и характер их влияния на
изучаемый параметр.
Данные модели не используют функциональные
зависимости; они основаны только
на статистических взаимосвязях.
При построении прогнозных моделей чаще
всего используется парный и
множественный регрессионный анализ;
в основе экстраполяционных методов лежит
анализ временных рядов.
Парный регрессионный
анализ основан на использовании уравнения
прямой линии:
y = a +bx, (2.4.1)
где y – оцениваемая или прогнозируемая
зависимая переменная (результативный
признак);
a – свободный член уравнения;
x – независимая переменная (факторный
признак), используемая для
определения зависимой переменной.
b – коэффициент регрессии, измеряющий
среднее отношение отклонения
результативного признака от его средней
величины к отклонению факторного
признака от его средней величины на
одну единицу его измерения – вариация
y,
приходящаяся на единицу вариации x.
Коэффициенты a и b рассчитываются
на основе наблюдений величин
y и x с помощью метода
наименьших квадратов [3].
Предположим, что торговый агент продает
детские игрушки, посещая квартиры
случайным образом. Отсутствие посещения
какой-то квартиры означает отсутствие
продажи или a = 0. Если в среднем каждый
десятый визит сопровождается
продажей на 62 доллара, то стоимость продажи
на один визит составит 6,2
доллара или b = 6,2.
Тогда y = 0 + 6,2x.
Таким образом, можно ожидать, что при
100 визитах доход составит 620
долларов. Надо помнить, что эта оценка
не является обязательной, а носит
вероятностный характер.
Анализ на основе
множественной регрессии основан
на использовании более
чем одной независимой переменной в уравнении
регрессии. Это усложняет анализ,
делая его многомерным. Однако регрессионная
модель более полно отражает
действительность, так как в реальности
исследуемый параметр, как правило,
зависит от множества факторов.
Так, например, при прогнозировании спроса
идентифицируются факторы,
определяющие спрос, определяются взаимосвязи,
существующие между ними, и
прогнозируются их вероятные будущие
значения; из них при условии реализации
условий, для которых уравнение множественной
регрессии остается справедливым,
выводится прогнозное значение спроса.
Все что касается множественной регрессии,
концептуально является идентичным
парной регрессии, за исключением того,
что используется более чем одна
переменная. Под этим углом зрения слегка
изменяется терминология и
статистические расчеты.
Многофакторное уравнение множественной
регрессии имеет следующий вид:
, (2.4.2)
где y – зависимая
или прогнозируемая переменная;
– независимая переменная;
– свободный член уравнения;
– коэффициент условно-чистой регрессии;
i = 1, m;
m – число независимых переменных
(факторных признаков).
Термин «коэффициент условно-чистой
регрессии» означает, что каждая из величин
b измеряет среднее по совокупности
отклонение зависимой переменной
(результативного признака) от ее
средней величины при отклонении
зависимой
переменной (фактора) x от своей средней
величины на единицу ее измерения и
при условии, что все прочие факторы,
входящие в уравнение регрессии,
закреплены на средних значениях, не
изменяются, не варьируются.
Ограничением прогнозирования на основе
регрессионного уравнения, тем более
парного, служит условие стабильности
или по крайней мере малой изменчивости
других факторов и условий изучаемого
процесса, не связанных с ними. Если
резко изменится «внешняя среда» протекающего
процесса, прежнее уравнение
регрессии результативного признака
на факторный потеряет свое значение.
Следует соблюдать еще одно ограничение:
нельзя подставлять значения
факторного признака, значительно отличающиеся
от входящих в базисную
информацию, по которой вычислено уравнение
регрессии. При качественно иных
уровнях фактора, если они даже возможны
в принципе, были бы иными параметры
уравнения. Можно рекомендовать при определении
значений факторов не выходить
за пределы трети размаха вариации, как
за минимальное, так и за максимальное
значение признака-фактора, имеющееся
в исходной информации.
Прогноз, полученный подстановкой в уравнение
регрессии ожидаемого значения
фактора, называют точечным прогнозом.
Вероятность точной реализации такого
прогноза крайне мала. Необходимо сопроводить
его значение средней ошибкой
прогноза или доверительным интервалом
прогноза, в который с достаточно
большой вероятностью попадают прогнозные
оценки. Средняя ошибка является
мерой точности прогноза на основе уравнения
регрессии. Существуют
усовершенствованные методы парной регрессии,
в какой-то степени
преодолевающие его недостатки [2], [3].
Простейшими методами прогнозирования
спроса на основе статистической
маркетинговой информации являются экстраполяционные
методы, основанные на
анализе временных рядов.
Многие данные маркетинговых исследований
представляются для различных интервалов
времени, например, на ежегодной, ежемесячной
и др. основе. Такие данные
называются временными рядами.
Анализ временных рядов направлен на
выявление трех видов закономерностей
изменения данных: трендов, цикличности
и
сезонности, выявление причин изменения
спроса в прошлом с последующим переносом
полученных закономерностей на будущее.
Тренд характеризует общую тенденцию
в изменениях показателей ряда. Те или
иные качественные свойства развития
выражают различные уравнения трендов:
линейные, параболические, экспоненциальные,
логарифмические, логистические и
др. После теоретического исследования
особенностей разных форм тренда
необходимо обратиться к фактическому
временному ряду, тем более что далеко
не
всегда можно надежно установить, какой
должна быть форма тренда из чисто
теоретических соображений. По фактическому
динамическому ряду тип тренда
устанавливают на основе графического
изображения, путем осреднения
показателей динамики, на основе статистической
проверки гипотезы о
постоянстве параметра тренда.
В табл.1 приводятся данные объема продаж
велосипедов определенной компании за
17 лет.
Таблица 1 Объем продажи велосипедов.
Год
Годовой объем продаж
(в 1000 долларов)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
1340
1221
909
1501
1350
1253
1561
1435
1114
1239
1453
1890
2220
2450
2790
3450
3759
????
Необходимо определить прогнозную оценку
объема продаж на восемнадцатый год.
Представив в графическом виде данные
табл. 1, можно с помощью метода
наименьших квадратов подобрать прямую
линию, в наибольшей степени
соответствующую полученным данным (рис.2)
и определить прогнозную величину
объема продаж.
В то же время более внимательное рассмотрение
рис.2 позволяет сделать вывод о
том, что не все точки близко расположены
к прямой. Особенно эти расхождения
велики для последних лет, а верить последним
данным, видимо, следует с
большим основанием.
В данном случае можно применить метод
экспоненциального сглаживания, назначая
разные весовые коэффициенты (большие
для последних лет) данным для разных лет
[3]. В последнем случае прогнозная
оценка в большей степени соответствует
тенденциям последних лет.
Рисунок 2 Прогнозирование объема продаж
велосипедов.
Циклический характер колебаний статистических
показателей характеризуется
длительным периодом (солнечная активность,
урожайность отдельных культур,
экономическая активность). Такие явления
обычно не являются предметом
исследования маркетологов, которых
обычно интересует динамика проблемы
на
относительно коротком интервале времени.
Сезонные колебания показателей имеют
регулярный характер и наблюдаются в
течение каждого года. Они являются предметом
изучения маркетологов (спрос на
Информация о работе Изучение покупательского спроса на продукцию фирмы