Системный анализ и управление логистическими системами

Автор работы: Пользователь скрыл имя, 28 Февраля 2010 в 05:28, Не определен

Описание работы

Курсовая работа

Файлы: 1 файл

logistic.doc

— 280.00 Кб (Скачать файл)

  Пусть  С2 0, а     С1=    С3=    С4=    С5=    С6=0, то получим:

   
 
 

Решением данного  неравенства будет  С2 < 18,31. При цене 18 д.е. продукцию П2 производить  не выгодно, при уменьшении цены П2 эту продукцию также не выгодно производить, но  увеличении цену можно  не более, чем на 18,31 д.е. При этом оптимальный план не изменится. 

Пусть  С3 0, а     С1=    С2=    С4=    С5=    С6=0, то получим:

   
 

                 -69.75   -21.98   -10 

Решением данного  неравенства будет  С3 от -10 ло +   . При изменении цены на продукцию П3 в данном интервале, ассортимент и объемы выпуска продукции не меняются, а выручка от реализации станет другой.

5. В условиях  конкуренции стоящая перед предприятием  задача меняется, при этом можно  использовать следующую оптимальную  модель. Условием этой задачи  будет являться определение экономического результата, при котором затраты на производство должны быть минимальны нормы расхода на производства одного изделия.

Числовая модель в данном случае будет следующая: 

L2 (x) min =  21 x1 + 30 x2 + 56 x3 , 

 
 
 
 

x1, x2, x3 > 0

Приведем к каноническому виду данную систему:

L2 (x) min =  21 x1 + 30 x2 + 56 x3 +  0x4 + 0x5 + 0x6 + 0x7,

    4x1+ 3x2 + 5x3 + x4= 1800 ,

    3x1+ 5x2 + 6x3          + x5= 2100 ,

    x1+  6x2 + 5x3                   + x6 = 2400 ;   

    21 x1 + 30 x2 + 56 x3                      - x7= 11025.  

x1, x2, x3,  x4, x5, x6, x7> 0

Так как х7 не является базисной (перед переменной стоит коэффициент-1), то для решения  данной задачи используем метод искусственного базиса. Для этого в четвертое ограничение введем неотрицательную искусственную переменную  х8', которая в целевой функции записывается с коэффициентом М.

L2 (x) min =  21 x1 + 30 x2 + 56 x3 +  0x4 + 0x5 + 0x6 + 0x7 + Мх8',

Получим расширенную  задачу:

           4x1+ 3x2 + 5x3 + x4      = 1800,

    3x1+ 5x2 + 6x3          + x5      = 2100,

    x1+  6x2 + 5x3                   + x6      = 2400;   

    21 x1 + 30 x2 + 56 x3                      - x7 + х8' = 11025.  

Строим первое опорное решение задачи:

СБ Б 0
  • 21
30 56 0 0 0 0 М
    b X1 X2 X3 X4 X5 X6 X7 X8'
0 x4 1800 4 3 5 1 0 0 0 0
0 x5 2100 3 5 6 0 1 0 0 0
0 x6 2400 1 6 5 0 0 1 0 0
  • М
х8 11025 30 40 70 0 0 0 -1 1
 
0 -21 -30 -56 0 0 0 0 0
0 x4 330 0 -2,333 -4,333 1 0 0 0,133 0,133
70 x5 997,5 0 1 -1 0 1 0 0,1 -0,1
0 x6 2032,5 0 4,666 2,667 0 0 1 0,033 -0,033
21 х1 367,5 1 1,333 2,333 0 0 0 -0,033 0,033
 
7717,5 0 -2 -7 0 0 0 -0,7 0,7-М
 

Решением данной симплекс таблицы будет следующим:

х1= 367,5;  х2= 0;  х3=0;  х4= 330;  х5= 997,5;  х6= 2032,5;  х7= 0;

Выручка от реализации продукции при данном оптимальном  плане составит:

21 * 367,5  + 30*0 + 56 *0 = 7717,5 д.е.

В заданном условии  задачи, т.е определении потоков  продукции, минимизирующих затраты производства при дополнительном условии выпуска продукции не менее 45 %  от максимально возможного, получим следующие результаты:

  • предприятие выпускает  изделия П1 в количестве 367,5 шт, (х1=367,5);
  • изделия П2, П3 предприятие не выпускает (х2=х3=0);
  • при данном процессе производства остаток ресурсов составит:

 а) материалов - 330 д.е.,

б) трудовых ресурсов - 997,5 чел/часов,

в) оборудования 2032,5 станко/часов.

Таким образом, при выпуске  367,5 шт первого изделия  предприятие минимизирует   затраты  на производство при дополнительном условии выпуска продукции не менее 45 %  от максимально возможного. При этом выручка от реализации продукции (изделия П1) составит 7717,5 д.е. 

Заключение

В данной курсовой работе мы рассмотрели одну из важных тем, изучаемых дисциплиной "Логистика", это  основы системного анализа, логистические системы и структура их управления. В работе были рассмотрены основные вопросы этой темы  такие как : основные принципы системного анализа, сравнительная характеристика классического и системных подходов к формированию систем. Кроме этого, были рассмотрены основные свойства  систем, а также вопрос о том, как эти свойства "работают" в логистических системах. Особое внимание было уделено вопросу о видах логистических систем и структуре их управления.

Цель второй части курсовой работы состоит в  том, чтобы с помощью методов  математического моделирования оптимизировать управление материальными потоками в заданной логистической системе. Кроме этого, задачами этой работы являются определение входных и выходных потоков логистической системы производства, составление математических моделей процессов производства и нахождение оптимальных потоков, максимизирующих объемы производства в стоимостном выражении, также требуется проведение экономический анализ оптимального процесса по последней симплекс-таблице, нахождение условия устойчивости структуры оптимального решения по отношению к изменениям: а) ресурсных входных потоков, б) коэффициентов целевой функции и определение оптимальных потоков продукции, минимизирующих затраты производства при дополнительном условии выпуска продукции не меньше 45 % от максимально возможного. 
 

 

  
 
 
 

Использованная  литература: 

  1.   Афанасьева Н.В.  Логистические системы  и российские реформы 

СПб: Спб ун-т  экономики  и финансов 1995 г.

  1. Гаджинский А.М. Основы логистики : учеб. пособие

М: ИВЦ "Маркетинг", 1995 г.

  1. Гаджинский А.М. Логистика : учебник

М: ИВЦ "Маркетинг", 1998 г.

  1. Карташев В.А. Система систем . Очерки общей теории и  методологии.

М: Прогресс -Академия, 1995 г.

  1. Калихман И.Л. Линейная алгебра  и программирование.

М: Высшая школа, 1967 г.

Информация о работе Системный анализ и управление логистическими системами