Автор работы: Пользователь скрыл имя, 26 Августа 2015 в 08:59, контрольная работа
В логике, как и во всякой науке, главное — законы. Логических законов бесконечно много, и в этом ее отличие от большинства других наук. Однородные законы объединяются в логические системы, которые тоже обычно именуются логиками.
Без логического закона нельзя понять, что такое логическое следование и что такое доказательство. Правильное, или, как обычно говорят, логичное, мышление — это мышление по законам логики, по тем абстрактным схемам, которые фиксируются ими. Законы логики составляют тот невидимый каркас, на котором держится последовательное рассуждение и без которого оно превращается в хаотическую, бессвязную речь.
Закон непротиворечия…………………………………………………….. ……….2
Первая и вторая фигуры категорического силлогизма,
их правила и модусы……………………………………………………………… 5
Правила аргументации. Логические ошибки в аргументации………….. ………9
Список литературы………………………………………………………… ……..12
Содержание:
их правила и модусы…………………………
Закон непротиворечия
В логике, как и во всякой науке, главное — законы. Логических законов бесконечно много, и в этом ее отличие от большинства других наук. Однородные законы объединяются в логические системы, которые тоже обычно именуются логиками.
Без логического закона нельзя понять, что такое логическое следование и что такое доказательство. Правильное, или, как обычно говорят, логичное, мышление — это мышление по законам логики, по тем абстрактным схемам, которые фиксируются ими. Законы логики составляют тот невидимый каркас, на котором держится последовательное рассуждение и без которого оно превращается в хаотическую, бессвязную речь.
Из бесконечного множества логических законов самым популярным является закон противоречия. Он был открыт одним из первых и сразу же объявлен наиболее важным принципом не только человеческого мышления, но и самого бытия.
У самого родоначальника науки о правильном мышлении запрет на одновременные утверждения и отрицания в качестве нормы и коренного условия для получения достоверных выводов упоминается многократно. И данные им формулировки закона, налагающего запрет на противоречия, и поныне могут считаться корректными и точными: "Невозможно, чтобы одно и то же в одно и то же время было и не было присуще одному и тому же в одном и том же отношении".1
Доказать этот закон нельзя, считает Аристотель, потому что для доказательства нужны какие-то уже твердо установленные первоначальные основопожения, между тем данный закон является как раз самым первым, что мы открываем в мышлении, и он становится как бы шаблоном, по которому проверяется потом любое рассуждение. "Поэтому все, кто приводит доказательство, - говорится несколькими строками далее, - сводят его к этому положению как к последнему, ведь по природе оно начало даже для других аксиом". Вместе с тем, не имея возможности доказать, можно, однако, возразить тем, кто возьмется его отвергать, добавляет затем Аристотель, потому что свое отрицание они должны выразить определенно: например, им нельзя сказать, что закон верен и неверен. "Но если такую необходимость признают, то доказательство уже будет возможно; в самом деле, тогда уже будет налицо нечто определенное. Однако почву для ведения доказательства создает не тот, кто доказывает, а тот, кто поддерживает рассуждение: возражая против рассуждений, он поддерживает рассуждение"2. Получается, даже отвергать этот закон можно лишь при условии его соблюдения.
И вместе с тем в истории логики не было периода, когда этот закон не оспаривался бы и когда дискуссии вокруг него совершенно затихали бы.
Закон непротиворечия (противоречия) – два несовместимых суждения об одном и том же предмете или классе предметов не могут быть истинными в одно и то же время и в одном и том же отношении. |
Закон противоречия говорит о противоречащих друг другу высказываниях, т. е. о таких высказываниях, одно из которых является отрицанием другого. К ним относятся, например, высказывания «Луна — спутник Земли» и «Луна не является спутником Земли», «Трава — зеленая» и «Неверно, что трава зеленая» и т.п. В одном из противоречащих высказываний что-то утверждается, в другом — это же самое отрицается.
Идея, выражаемая законом противоречия, кажется, простой и даже банальной: высказывание и его отрицание не могут быть вместе истинными.
Если ввести понятия истины и лжи, закон противоречия можно сформулировать так: никакое высказывание не является вместе истинным и ложным.
Закон противоречия задает определенность и последовательность в качестве самых фундаментальных свойств логического мышления. Уточнение смысла этого закона для конкретных условий не допускает прямолинейности, как это чаще всего бывает и со всеми другими фундаментальными принципами научного знания. Такие положения всегда содержат определенную долю идеализации.
Первая и вторая фигуры категорического силлогизма,
их правила и модусы
Теория простого категорического силлогизма представляет собой, пожалуй, самую сложную и развитую часть традиционной логики. Этот ее раздел был разработан Аристотелем в практически законченном виде, прежде всего в его двух книгах под названием "Аналитика". Греческое слово sillogismos переводится как сосчитывание. Аристотель называет им не только простой категорический силлогизм, как это принято в большинстве учебников теперь. Нередко оно у него обозначает вообще всякое умозаключение.
Силлогистическое умозаключение составляется из двух категорических суждений, у которых имеется общий термин. Этот термин, называемый средним, опосредствует отношение между другими, крайними терминами суждений, создает между ними связь, которая отмечается в заключении. Сам же средний термин в заключение не попадает. Он играет роль посредника между крайними терминами. Примером силлогизма может послужить следующее умозаключение:
(1) Фаянсовая посуда покрывается глазурью. P - M
(2) Данная чашка не покрыта глазурью. S - M
(3) Данная чашка - не фаянсовая посуда. S - P
Строки (1) и (2) представляют собой посылки, (3) - заключение. В первой посылке отмечается связь понятия "фаянсовая посуда" и понятия "глазурованное", во второй - какой-то конкретной (единичной) чашки с тем же "глазурованным". Таким образом, "глазурованное" выступает средним термином. Из знания отношения к нему двух других терминов можно сделать заключение о том, как они соотносятся между собой: данная чашка - не фаянсовая.
Субъект заключения (у нас это "данная чашка") принято обозначать буквой S. Его называют меньшим термином и в соответствии с этим посылку, в которой он содержится, - меньшей; она всегда ставится на втором месте (во второй строке). Предикат заключения (в нашем случае это "фаянсовая посуда") обозначают латинской буквой P и называют большим термином; отсюда посылка, где он содержится, получает название "большой"; ее записывают первой строкой.
Обозначением для среднего термина служит латинская М. Этот термин: как уже сказано, имеется в обеих посылках.
Силлогизмом называют умозаключение об отношении двух терминов, являющихся крайними, на основании их отношения к третьему термину, называемому средним.
Разумеется, силлогизм может составляться также и из суждений с иными качественно-количественными характеристиками, чем в приведенном примере. Чисто математически всего возможно 256 комбинаций разных категорических суждений, объединенных по три. Однако далеко не все из них образуют силлогизмы. Тех сочетаний, которые приводят к правильным выводам, всего 19. Все правильные силлогизмы принято разбивать на четыре разновидности, называемые фигурами. Они различаются местом среднего термина.
В каждой фигуре, в свою очередь, содержится несколько разновидностей силлогизма, называемых модусами.
Мы рассмотрим первые 2 фигуры. Их символическое представление показано в таблице модусов силлогизма. Первая фигура силлогизма образуется тогда, когда средний термин в большой посылке стоит на месте субъекта, а в меньшей - на месте предиката. В списке модусов они собраны в первой колонке слева. Символ M во всех этих модусах расположен как бы по диагонали. Аристотель называл эту фигуру совершенной. Она является самой наглядной и легко понимается. Объясняется это тем, что ею выражаются самые простые объемные отношения между понятиями-терминами. Маленький термин целиком содержится в среднем, средний целиком входит или целиком не входит в большой термин. Кроме того, только первая фигура допускает общеутвердительные заключения: это значит, что она обладает наивысшей доказательной силой при выведении дедуктивным путем общих законов. Всего у этой фигуры четыре модуса, как это видно из таблицы. Таблица модусов силлогизма :
I фигура |
II фигура |
ААА |
AEE |
AII |
AOO |
EAE |
EAE |
EIO |
EIO |
Преступник (M) не является законопослушным (P). M - P
Мошенник (S) - преступник (M). S - M
Мошенник (S) не является законопослушным (P). S - P
Вторая фигура силлогизма получается тогда, когда средний термин в обеих посылках стоит на месте предиката. Приведенный нами сначала пример с фаянсовой посудой представляет собой как раз второй модус этой фигуры. Она чаще всего используется в опровержениях или в доказательствах от противного. Вторая фигура дает четыре правильных модуса.
В средние века всем модусам простого категорического силлогизма были даны латинские имена: Barbara, Cesare, Darii и другие. Они подобраны с таким расчетом, чтобы гласные повторяли буквенные обозначения посылок и заключений. Так, Barbara означает силлогизм, у которого все три суждения общеутвердительные. Это первая фигура, первый модус. В настоящее время такие названия употребляются редко.
При выполнении логических операций по схемам силлогизма надо знать его правила:
1. В категорическом силлогизме
должно быть три и только
три термина. Часто из-за двусмысленности
слов за три термина
2. Средний термин должен быть распределен, по крайней мере, в одной из посылок.
3. Термин не может быть
4. Из двух отрицательных посылок нельзя вывести заключение.
5. Если одна посылка - отрицательное суждение, то и заключение должно быть отрицательным.
6. Из двух частных посылок нельзя вывести заключение.
7. Если одна из посылок является частным суждением, то и заключение должно быть частным.
Существуют так же правила для отдельных фигур, мы рассмотрим их только для I и II фигур.
Правила I фигуры:
Правила II фигуры:
В основе силлогистических умозаключений лежит одно, достаточно самоочевидное положение о соотношении частей и целого. Его поэтому называют аксиомой силлогизма. Формулируют ее в двух вариантах, каждый из которых имеет свои сильные и слабые стороны. Наиболее признанной является такая формулировка:
Все, что утверждается или отрицается относительно всех предметов данного класса, то утверждается или отрицается относительно каждого предмета данного класса. |
Правила аргументации. Логические ошибки в аргументации.
Аргументы также называются основаниями доказательства. Они представляют собой фундамент обосновываемой мысли. Существует три правила:
Первое правило обычно интерпретируют как требование о том, чтобы аргументы были непременно истинными суждениями. Это оправдано, если иметь в виду наиболее распространенную практику. Как правило, начало доказательства действительно составляют истинные суждения. Таковыми могут быть твердо установленные факты, законы науки, аксиомы и постулаты. Однако теоретически можно мыслить и такие обстоятельства, когда доказательство начинается с суждений ложных. Но только надо, чтобы это было известно. Тогда из них путем простого отрицания можно получить истинные суждения. Изредка такое бывает, к примеру, когда эксперимент дает отрицательный результат. Поэтому будет точнее, если мы скажем, что истинность аргументов должна быть определена. Этого достаточно, чтобы получить достоверные утверждения в процессе рассуждения. В этом можно убедиться на самых разных примерах. Как мы знаем, древние мыслители, а за ними и последующие ученые, полагали, что атом неделим в абсолютном смысле этого слова. Но потом выяснилось, что это ложно. Отсюда наука пришла к очень многим содержательным выводам, и это может послужить для нас образцом рассуждения от отрицательного результата.
Нарушение данного, первого, правила называют в логике основным заблуждением. Оно выражается в том, что ложные аргументы принимаются за истинные (или наоборот). Разумеется, и выводы в таких случаях всегда будут неверными.
Включение в положение об истинности аргументов требования их непротиворечивости объясняется тем, что оно дает дополнительный критерий истинности. Ибо когда одно суждение противоречит другому, то тогда какое-то из них обязательно истинно, а какое-то обязательно ложно. И наоборот, если все они истинны, то значит ни один из аргументов не противоречит другому. Часто это требование формулируют как еще одно, четвертое, правило.