Автор работы: Пользователь скрыл имя, 04 Ноября 2010 в 15:25, Не определен
Основные законы мышления
Закон исключения третьего
Закон достаточного основания
Закон достаточного основания имеет прямое отношение к юридической практике. В законодательстве довольно широко распространено само понятие «достаточные основания». Так, в уголовном процессе по отношению к обвиняемому (а в исключительных случаях к подозреваемому) законом предусмотрены меры пресечения при наличии для этого достаточных оснований. Причем сами эти основания раскрываются.
В гражданском
законодательстве говорится, что гражданские
права и обязанности возникают
из предусмотренных законом
В судебной практике дело может стать предметом судебного разбирательства, если для этого есть достаточные основания. Приговор или решение суда должны быть мотивированными, т. е. обоснованными.
В повседневной речи, говоря о том, что многие законы не действуют, мы приводим в качестве основания то, что нет процедуры их использования и т. д.
Рассмотренные
выше основные формально-логические законы
мышления открыты традиционной логикой.
Как относится к ним
Так, закон тождества выражается логической формулой А ≡ А (А равносильно А) или А->А («Если А, то А»).
Закон противоречия выражается формулой ┐ (А^ ┐А) («Неверно, что А и не-А).
Закон исключенного третьего — A v ┐А (А или не-А).
Считается, что закон достаточного основания символически выразить нельзя, так как это исключительно содержательный закон. Приведем пример толкования подобных формул. Так, сложные высказывания типа: «Закон принят, или закон не принят», «Решение суда правильное, или решение суда неправильное», имея формулу Av┐А (закон исключенного третьего), истинны независимо от того, истинны или ложны образующие их элементарные суждения. Вот таблица истинности этой формулы:
Наряду с тождественно-
Благодаря табличному способу символическая логика (логика высказываний) в состоянии эффективно выявлять как тождественно-истинные формулы, так и тождественно-ложные формулы — законы логики и логические противоречия. В этом ее громадный шаг вперед по сравнению с традиционной логикой.
- 10 -