Структура доказательства

Автор работы: Пользователь скрыл имя, 20 Января 2013 в 13:33, реферат

Описание работы

Искусство критического и рационального мышления, как и любое другое мастерство, приобретается путем систематической работы над собой с помощью тренировок и упражнений, беспристрастного и строгого анализа собственной деятельности, преодоления ошибок и заблуждений. Сознательное и вдумчивое усвоение основных понятий, принципов и методов логики, их умелое применение в тех областях деятельности, в которых сосредоточены интересы обучающегося, будут способствовать овладению мастерством аргументации.

Цель данной работы: изучить способы доказательств.
Задача данной работы: овладеть способами доказательств.

Содержание работы

Введение 3
1.Структура доказательства: …….……………………………….7
3.Заключение 17
4.Литература 18

Файлы: 1 файл

мой реферт почти готов (1).doc

— 86.00 Кб (Скачать файл)

Содержание 

 

Введение

В научном познании, практической деятельности и повседневной жизни  нам постоянно приходится убеждать своих собеседников и оппонентов в правильности и обоснованности своих утверждений, гипотез и мнений, т.е. аргументировать их. Хотя на убеждение людей могут влиять также их эмоции, настроения, чувства, склонности и даже предубеждения, все же наибольшей убедительностью обладают несомненно доводы (или аргументы), опирающиеся прежде всего на разум и факты.

Логике принадлежит центральная  роль в обосновании правильности наших рассуждений, так как именно соблюдение ее правил предохраняет нас от ошибочных выводов. По сути дела, логика была создана Аристотелем как наука, позволяющая различать правильные определения и умозаключения от неправильных и тем самым вскрывать ошибки в рассуждениях и публичных речах ораторов. Однако в дальнейшем логика стала утрачивать свои связи с ораторским искусством и риторикой, все больше замыкаясь в рамках собственных проблем. Это даже дало повод известному немецкому философу И. Канту заявить, что со времен Аристотеля логика не сделала ни одного значительного шага вперед.

К счастью, давно наметившаяся тенденция  к символизации и формализации логики привела со временем к новому мощному  ее подъему, завершившемуся возникновением символической (или математической) логики. В отличие от Аристотелевской логики, превратившейся в небольшую часть новой логики, последняя разработала точные и эффективные методы формального анализа, опирающиеся на концепции, методы и технику математики. Эти методы во многом способствовали возникновению теории алгоритмов, приемов математического моделирования и программирования для решения сложных задач техники, экономики, торговли и транспорта и тем самым развертыванию компьютерной революции в мире.

Нетрудно, однако, понять, что формализация рассуждений, алгоритмизация и компьютеризация  предполагают развитую способность к анализу конкретных задач, содержательных способов рассуждений, которые ведутся на естественном языке и служат основой для дальнейшего формального анализа.

Особое значение содержательные рассуждения  приобретают при оценке тех данных, на которые, как на посылки, опираются большинство наших выводов в ходе аргументации. Пожалуй, именно рациональный и критический анализ этих данных составляет важнейшую и вместе с тем труднейшую часть любого конкретного исследования. Наряду с дедукцией (или выводом заключений из посылок) здесь для обобщения и оценки самих данных постоянно приходится обращаться к индукции, аналогии и статистике, заключения которых хотя и не являются достоверными, а лишь вероятными, но тем не менее они весьма существенны для окончательных выводов. К такого рода правдоподобным рассуждениям часто прибегают в ходе спора, дискуссии или полемики.

Овладение мастерством аргументации и убеждения приобретает особенно важное значение для тех, кто готовится  к профессиональной деятельности в области социально-гуманитарных наук. Поскольку их объектом является человек во всей сложности его отношений к обществу и другим людям, то воздействовать на эти отношения и изменить их к лучшему становится возможным прежде всего через сознание людей посредством разнообразных средств убеждения. К ним относятся реальные факты и доводы разума, основанные на них. Но это не исключает, а скорее предполагает влияние других факторов психологического, нравственного, эстетического характера. Если они будут в согласии с фактическими доводами, то степень убеждения повысится, в противном случае – уменьшится.

Но как бы ни были обоснованы разумные доводы в отдельности, их надо еще  выстроить в логически последовательную систему, чтобы добиться наибольшей эффективности убеждения. А это требует основательного знакомства с логикой. К сожалению, сложившаяся практика преподавания логики в гуманитарных высших учебных заведениях не ориентирует студентов на те конкретные реалии, с которыми они будут встречаться в своей будущей профессии. Вместо изучения современных методов рассуждения и аргументации их заставляют обсуждать искусственно придуманные примеры, подогнанные под умозаключения традиционного типа. По-прежнему в учебниках пестрят примеры силлогизмов, соритов, дилемм, трилемм и других построений традиционной логики, представляющих в основном исторический интерес, поскольку все они могут рассматриваться как частные случаи более общей современной концепции дедуктивной логики. Еще хуже излагаются идеи индукции, аналогии, статистических умозаключений, представляющие собой частные случаи вероятностной логики.

Недостаток существующих руководств, пособий и учебников по логике состоит в том, что в них  проблемы дедуктивных рассуждений, логического вывода излагаются в  отрыве от правдоподобных рассуждений, логического подтверждения обобщений и гипотез. Иногда дедукция даже рассматривается как вывод частных следствий из общих положений. Но в таком случае сразу же возникает вопрос: откуда и как получаются общие положения?

Реальный процесс рассуждений в науке и повседневной деятельности показывает, что логический вывод и подтверждение, достоверные и правдоподобные рассуждения взаимно предполагают и дополняют друг друга. С помощью правдоподобных рассуждений удается оценить степень вероятности или подтверждение обобщений, предположений и гипотез, по которым происходят споры или дискуссии. Посредством дедукции обычно выводятся логические следствия из них, которые сопоставляются с данными наблюдений, опыта и практики, и тем самым обеспечивается их проверка. Вот почему знание логики необходимо для каждого, кто стремится овладеть искусством аргументации и рационального убеждения.

Спорить и убеждать можно, конечно, опираясь и на так называемый здравый  смысл, но он тоже, хотя и в неявной  форме, основывается на применении простейших законов логики. Когда же приходится вскрывать и анализировать возникающие в ходе спора ошибки, тогда явное обращение к логике становится неизбежным. Поэтому именно логика помогает овладеть навыками критического мышления и рациональной аргументации.

Искусство критического и рационального  мышления, как и любое другое мастерство, приобретается путем систематической  работы над собой с помощью  тренировок и упражнений, беспристрастного и строгого анализа собственной  деятельности, преодоления ошибок и заблуждений. Сознательное и вдумчивое усвоение основных понятий, принципов и методов логики, их умелое применение в тех областях деятельности, в которых сосредоточены интересы обучающегося, будут способствовать овладению мастерством аргументации.

 

Цель данной работы: изучить  способы доказательств.

 Задача данной работы:  овладеть  способами доказательств.   

 

 

 

 

    1. Структура доказательства: тезис, аргументы, демонстрация

Тезис — это суждение, истинность которого надо доказать.

Аргументы — это те истинные суждения, которыми пользуются при доказательстве тезиса. Формой доказательства, или демонстрацией, называется способ логической связи между тезисом и аргументами.

Приведем пример доказательства. Поль С. Брэгг высказал такой тезис: «Купить здоровье нельзя, его можно только заработать своими собственными постоянными усилиями». Этот тезис он обосновывает так: «Только упорная и настойчивая работа над собой позволит каждому сделать себя энергичным долгожителем, наслаждающимся бесконечным здоровьем. Я сам заработал здоровье своей жизнью. Я здоров 365 дней в году, у меня не бывает никаких болей, усталости, дряхлости тела. И вы можете добиться таких же результатов!»

Брэгг П. С. Чудо голодания. М., 1989. С. 6. Он умер в декабре 1976 г. в возрасте 95 лет. Во время катания на доске у побережья Флориды его накрыла гигантская волна. Его оплакивали 5 детей, 12 внуков, 14 правнуков и тысячи последователей.

Виды аргументов

Различают несколько видов аргументов:

1. Удостоверенные единичные факты. К такого рода аргументам относится так называемый фактический материал, т. е. статистические данные о населении, территории государства, выполнении плана, количестве вооружения, свидетельские показания, подписи на документах, научные данные, научные факты. Роль фактов в обосновании выдвинутых положений, в том числе научных, велика.

В «Письме к молодежи» И. П. Павлов призывал молодых ученых к изучению и накоплению фактов: «Изучайте, сопоставляйте, накопляйте факты.

Как ни совершенно крыло птицы, оно  никогда не смогло бы поднять ее ввысь, не опираясь на воздух.

Факты — воздух ученого. Без них вы никогда не сможете взлететь. Без них ваши «теории» — пустые потуги.

Но изучая, экспериментируя, наблюдая, старайтесь не оставаться у поверхности фактов. Не превращайтесь в архивариусов фактов. Пытайтесь проникнуть в тайну их возникновения. Настойчиво ищите законы, ими управляющие».

Ценой десятков тысяч проведенных  опытов, сбора научных фактов И. В. Мичурин создал стройную систему  выведения новых сортов растений. Сначала он увлекся работами по акклиматизации изнеженных южных и западноевропейских плодовых культур в условиях средней полосы России. Путем гибридизации он сумел создать свыше 300 сортов плодовых и ягодных культур. Это яркий пример того, как подлинный ученый собирает и обрабатывает огромный научный фактический материал.

2. Определения как аргументы доказательства. Определения понятий обычно даются в каждой науке. Правила определения и виды определений понятий были рассмотрены в теме «Понятие», и там же были приведены многочисленные примеры определений понятий различных наук: математики, химии, биологии, географии и пр.

3. Аксиомы. В математике, механике, теоретической физике, математической логике и других науках, кроме определений, вводят аксиомы. Аксиомы — это суждения, которые принимаются в качестве аргументов без доказательства.

4. Ранее доказанные законы науки и теоремы как аргументы доказательства. В качестве аргументов доказательства могут

выступать ранее доказанные законы физики, химии, биологии и других наук, теоремы математики (как классической, так и конструктивной). Юридические законы являются аргументами в ходе судебного доказательства.

В ходе доказательства какого-либо тезиса может использоваться не один, а несколько из перечисленных видов аргументов.

Прямое доказательство

При прямом доказательстве задача состоит в том, чтобы подыскать  такие убедительные аргументы, из которых  по логическим правилам получается тезис.

Например, нужно доказать, что сумма  углов четырехугольника равна 360°. Из каких утверждений можно было бы вывести этот тезис? Отмечаем, что диагональ делит четырехугольник на два треугольника. Значит, сумма его углов равна сумме углов двух треугольников. Известно, что сумма углов треугольника составляет 180°. Из таких положений выводим, что сумма углов четырехугольника равна 360°.

В построении прямого  доказательства можно выделить два  связанных между собою этапа: отыскание тех, признанных обоснованными утверждений, которые способны быть убедительными аргументами для доказываемого положения; установление логической связи между найденными аргументами и тезисом. Нередко первый этап считается подготовительным и под доказательством понимается дедукция, связывающая подобранные аргументы и доказываемый тезис.

Еще пример. Нужно доказать, что космические корабли подчиняются действию законов небесной механики. Известно, что эти законы универсальны: им подчиняются все тела в любых точках космического пространства. Очевидно также, что космический корабль есть космическое тело. Отметив это, строим соответствующее дедуктивное умозаключение. Оно является прямым доказательством рассматриваемого утверждения.

Косвенное доказательство

Косвенное доказательство устанавливает справедливость тезиса тем, что вскрывает ошибочность  противоположного ему допущения, антитезиса.

Как с иронией замечает американский математик Д. Пойа, «косвенное доказательство имеет некоторое сходство с надувательским приемом политикана, поддерживающего своего кандидата тем, что опорочивает репутацию кандидата другой партии».

В косвенном доказательстве рассуждение идет как бы окольным путем. Вместо того чтобы Прямо отыскивать аргументы для выведения из них доказываемого положения, формулируется антитезис, отрицание этого положения. Далее тем или иным способом показывается несостоятельность антитезиса. По закону исключенного третьего, если одно из противоречащих друг другу утверждений ошибочно, второе должно быть верным. Антитезис ошибочен, значит, тезис является верным.

Поскольку косвенное  доказательство использует отрицание  доказываемого положения, оно является, как говорят, доказательством от противного.

Допустим, нужно построить  косвенное доказательство такого весьма тривиального тезиса: «Квадрат не является окружностью». Выдвигается антитезис: «Квадрат есть окружность». Необходимо показать ложность этого утверждения. С этой целью выводим из него следствия. Если хотя бы одно из них окажется ложным, это будет означать, что и само утверждение, из которого выведено следствие, также ложно. Неверным является, в частности, такое следствие: у квадрата нет углов. Поскольку антитезис ложен, исходный тезис должен быть истинным.

Другой пример. Врач, убеждая пациента, что тот не болен гриппом, рассуждает так. Если бы действительно был грипп, имелись бы характерные для него симптомы: головная боль, повышенная температура и т.п. Но ничего подобного нет. Значит, нет и гриппа.

Это опять-таки косвенное  доказательство. Вместо прямого обоснования тезиса выдвигается антитезис, что у пациента в самом деле грипп. Из антитезиса выводятся следствия, но они опровергаются объективными данными. Это говорит, что допущение о гриппе неверно. Отсюда следует, что тезис «Гриппа нет» истинен.

Доказательства от противного обычны в наших рассуждениях, особенно в споре. При умелом применении они  могут обладать особенной убедительностью.

Информация о работе Структура доказательства