Автор работы: Пользователь скрыл имя, 28 Марта 2011 в 23:19, контрольная работа
Структура всякого умозаключения включает посылки, заключение и логическую связь между посылками и заключением. Логический переход от посылок к заключению называется выводом. В приведенном примере два первые суждения, стоящие над чертой, являются посылками; суждение “Мошенничество наказуемо ” является заключением. Для того чтобы проверить истинность заключения “ Мошенничество наказуемо ”, вовсе не нужно обращаться к непосредственному опыту, т.е. совершать преступление и ждать наказание, заключение о наказуемости мошенничества с полной достоверностью можно получить посредством умозаключения, опираясь на истинность посылок и соблюдение правил вывода.
1.Общие понятия об умозаключении, виды умозаключений.
2.Дедуктивные умозаключения.
3.Понятие правила вывода.
4.Выводы из категорических суждений посредством их преобразования
АФ НОУ
ВПО «СПбГУП»
Кафедра
общеобразовательных дисциплин.
Контрольная работа
по
логике
«Дедуктивные
умозаключения»
Выполнил:
Студент группы 103 ЮЗ
Хомулло
В А
Проверил:
Доцент
Шуляк Л
П
Алматы 2011
Содержание:
1.Общие понятия об умозаключении. Виды умозаключений.
Умозаключения являются формой абстрактного мышления. С помощью многообразных видов умозаключений опосредованно мы можем получать новые знания. Умозаключать можно при наличии одного или нескольких суждений (называемых посылками), поставленных во взаимную связь.
Возьмем пример умозаключения:
Преступление наказуемо.
Мошенничество преступление.
Мошенничество наказуемо.
Структура всякого умозаключения включает посылки, заключение и логическую связь между посылками и заключением. Логический переход от посылок к заключению называется выводом. В приведенном примере два первые суждения, стоящие над чертой, являются посылками; суждение “Мошенничество наказуемо ” является заключением. Для того чтобы проверить истинность заключения “ Мошенничество наказуемо ”, вовсе не нужно обращаться к непосредственному опыту, т.е. совершать преступление и ждать наказание, заключение о наказуемости мошенничества с полной достоверностью можно получить посредством умозаключения, опираясь на истинность посылок и соблюдение правил вывода.
Умозаключение - форма мышления, в которой из одного или нескольких суждений на основании определенных правил вывода получается новое суждение, с необходимостью или определенной степенью вероятности следующее из них.
Умозаключения
делятся на следующие виды:
1.В зависимости
от строгости правил вывода
различают демонстративные (
2.По направленности
логического следования, т.е. по
характеру связи между знанием
различной степени общности
Дедуктивными (от латинского deductio – «выведение») называется умозаключение, в котором переход от общего знания к частному является логически необходимым.
Правила
дедуктивного вывода определяются характером
посылок, которые могут быть простыми
(категорическими) или сложными суждениями.
3.В зависимости
от количества посылок
Процесс
получения заключений из посылок
по правилам дедуктивных умозаключений
называется выведением следствий.
2.Дедуктивные умозаключения.
В определении дедукции в логике выявляются два подхода:
1. В традиционной
(не в математической) логике дедукцией
называют умозаключение от
2. В современной
математической логике
Дедуктивные
умозаключения - те умозаключения, у
которых между посылками и заключением
имеется отношение логического следования.
Определение
дедуктивного умозаключения, данного
в традиционной логике (т. е. Д1),
- частный случай этого определения через
логическое следование. Рассмотрим пример:
Все перепончатокрылые - насекомые.
Все пчелы - перепончатокрылые.
Все пчелы - насекомые.
Здесь
первая посылка “Все перепончатокрылые
- насекомые” является общеутвердительным
суждением и выражает большую
степень обобщения по сравнению
с заключением, также являющимся
общеутвердительным суждением: “Все пчелы
- насекомые”. Мы строим умозаключение
от признака, принадлежащего роду (“перепончатокрылые”),
к его принадлежности к виду - “пчела”,
т. е. от общего класса к его частному случаю,
к подклассу. Частный случай при этом не
надо путать с частными суждениями вида
“Некоторые S суть Р” или “Некоторые
S не суть Р”.
3.Понятие правила вывода.
Умозаключение дает истинное заключение, если исходные посылки истинны и соблюдены правила вывода. Правила вывода, или правила преобразования суждений, позволяют переходить от посылок (суждений) определенного вида к заключениям также определенного вида. Например, если в качестве посылок даны два суждения, представимые в виде формулы “a v b” и формулы “â”, то можно перейти к суждению вида “b”. Это можно в виде формулы путем преобразований по правилу (а ύ b), а├ b записать так: ((a ύ b)^â) →b. Данная формула является законом логики.
Логически правильно можно рассуждать в применении к вопросам, относящимся к любым предметам. Логические ошибки также могут быть обнаружены в рассуждениях любого предметного содержания. Из этого не следует, разумеется, что в любых условиях и к любой предметной области должен быть применим один и тот же аппарат формальных логических правил. Сам этот аппарат должен развиваться вместе с развитием науки и практической деятельности людей. Одна из характерных черт логики состоит в том, что логика позволяет, получив некоторую информацию, знания об обстоятельствах дела, извлечь из них - точнее говоря, выявить - содержащиеся в их совокупности новые знания. Так, наблюдая движение Луны и Солнца и делая логические выводы из этих наблюдений (включая и индуктивные обобщения), люди еще в античной древности умели логически выводить из них достаточно точные предсказания о наступлении солнечных и лунных затмений.
Формализация способов вывода состоит прежде всего в том, что каждый шаг вывода совершается только в соответствии с каким-нибудь из заранее перечисленных правил вывода, относящихся только к способам оперирования с некоторыми материальными объектами, например, словами, служащими для выражения мысли, и вообще с формальными выражениями мысли с помощью материальных знаков. Среди последних имеются специфические логические знаки, так называемые логические константы (постоянные). В математической логике - это конъюнкция, дизъюнкция, отрицание, импликация, эквиваленция, кванторы общности и существования и др.
Различают правила
прямого вывода и правила
непрямого (косвенного)
вывода. Правила прямого вывода позволяют
из имеющихся истинных посылок получить
истинное заключение. Правила непрямого
(косвенного) вывода позволяют заключать
о правомерности некоторых выводов из
правомерности других.
Типы дедуктивных умозаключений (выводов) такие:
- выводы, зависящие от субъектно-предикатной структуры суждений;
- выводы, основанные на логических связях между суждениями (выводы логики высказываний).
Рассмотрим выводы, основанные на субъектно-предикатной структуре суждений. К формам, типичным в практике рассуждений, относятся следующие выводы из категорических суждений:
1.Выводы посредством преобразования суждений;
2.Категорический силлогизм,
сокращенный силлогизм (энтимема), сложные
силлогизмы (полисиллогизмы) и сложно-сокращенные
силлогизмы (сориты и эпихейрема).
4.Выводы из категорических суждений посредством их преобразования.
Непосредственными умозаключениями называются дедуктивные умозаключения, делаемые из одной посылки, являющейся категорическим суждением. К ним в традиционной логике относятся следующие: превращение, обращение, противопоставление предикату и умозаключения по “логическому квадрату”.
Превращение - вид непосредственного умозаключения, при котором изменяется качество посылки без изменения ее количества, при этом предикат заключения является отрицанием предиката посылки. Как уже отмечалось, по качеству связки (“есть” или “не есть”) категорические суждения делятся на утвердительные и отрицательные.
Схема превращения:
S есть Р
S не есть не-Р
При этом частноутвердительное суждение превращается в частноотрицательное и наоборот, а общеутвердительное суждение превращается в общеотрицательное и наоборот. Можно выделить два частных способа превращения:
1.Путем двойного отрицания, которое ставится перед связкой и перед предикатом:
S есть Р → S не есть не-Р
Пример: “Подлежащее-главный член предложения”. “Ни одно подлежащее не является не главным членом предложения”.
2.Отрицание можно переносить из предиката в связку:
S есть не-Р → S не есть Р.
Пример: “Все галогены являются неметаллами.” → “Ни один галоген не является металлом”.
Превращению подлежат
все четыре вида суждения А,
Е, I, О. При этом:
1. Суждение А переходит в Е, что записывается А → Е. Структура: Все S есть Р. →Ни одно S не есть не-Р.
Примеры: “Все волки - хищные животные”.→ “Ни один волк не является нехищным животным”; “Все бамбуки - злаки”. →“Ни один бамбук не является не злаком”.
2. Суждение Е переходит в А, т. е. Е-→А.
Ни одно S не есть Р. →Все S есть не-Р.
Примеры: “Ни один многогранник не является плоской фигурой”. →“Все многогранники являются неплоскими фигурами”; “Ни одна ель не является лиственным деревом”. →“Все ели являются нелиственными деревьями”.
3. Суждение I переходит в О, т. е. I → О. Некоторые S есть Р. → Некоторые S не есть не-Р. Пример: “Некоторые грибы съедобны”. →“Некоторые грибы не являются несъедобными”.
4. Суждение О переходит в I, т. е. О →1. Некоторые S не есть Р. →Некоторые S есть не-Р. Пример: “Некоторые члены предложения не являются главными”. →“Некоторые члены предложения являются неглавными”.
Обращением называется такое непосредственное умозаключение, в котором в заключении (в новом суждении) субъектом является предикат, а предикатом - субъект исходного суждения, т. е. происходит перемена мест субъекта и предиката при сохранении качества суждения. Схема обращения: