Задача оптимального управления ресурсами промышленного предприятия с учетом взаимодействия со смежными предприятиями

Автор работы: Пользователь скрыл имя, 01 Октября 2011 в 23:28, автореферат

Описание работы

Цель работы. Целью работы является:

построение модели взаимодействия промышленных предприятий в условиях кризиса производства;

решение задач оптимального управления с фазовыми и смешанными ограничениями (схема Дубовицкого-Милютина) для разработанной модели;

решение задач линейного программирования большой размерности методом продолжения решения по параметру;

на основании проведенных исследований – предоставить возможность выработки обоснованных эффективных управленческих решений для оптимального развития промышленного производства в условиях кризиса.

Файлы: 1 файл

Задача оптимального управления ресурсами промышленного предприятия с учетом взаимодействия со смежными предприятиями..doc

— 1.44 Мб (Скачать файл)

необходимые условия оптимальности имеют  вид:

,
,
 
,
 
,
 

где вектор

является решением системы уравнений

 

с условиями

.
 

Далее рассматриваются достаточные условия  оптимального управления, основанные на методике сведения линейной задачи ОУ со смешанными ограничениями к задаче ЛП в банаховых пространствах, предложенной А.М. Тер-Крикоровым. Далее рассматриваются две задачи:

Задача  1.

Найти управления , дающие максимум линейному функционалу

(1)

при следующих  ограничениях:

,
(2)
,
,
(3)
,
.
(4)

Матрицы , , и и векторы , имеют ограниченные измеримые компоненты, которые выражают обобщенные    технологические и весовые  показатели. Соответствующие матрицы и векторы имеют следующие размеры: , , , , , , , , . Векторы с символом являются строками, без – столбцами.

Задача  2.

Найти управления , , дающие минимум линейному функционалу

(5)

при следующих  ограничениях:

,
(6)
,
(7)
,
.
(8)
 

Достаточные условия оптимальности задач 1 и 2 даются следующей теоремой:

Теорема 1 (Тер-Крикоров). Пусть для некоторых допустимых управлений и , задач 1 и 2 выполнены условия

,
;
(9)
,
;
(10)
,
,
(11)

причем  первые два равенства выполняются  почти при всех . Тогда , будет оптимальным решением задачи 1, а , , будет оптимальным решением задачи 2.

Необходимые условия оптимальности для задачи 1 формулируются в терминах принципа максимума Понтрягина с использованием сопряженных переменных . Связь сопряженных переменных и переменных задачи 2 дается следующими леммами:

       Лемма 1. Если при допустимом управлении задачи 1 существует вектор сопряженных переменных , константа и векторы множителей Лагранжа , , удовлетворяющие дифференциальным уравнениям и краевым условиям для , условиям Блисса и условиям дополняющей нежесткости для , , то и являются допустимыми управлением и фазовым вектором задачи 2.

      Лемма 2. Если существуют допустимые управления , , задач 1 и 2, и они удовлетворяют условиям (2.5.9)-(2.5.11), то вектор траектории задачи (2.5.5)-(2.5.8), соответствующей управлению , является вектором сопряженных переменных задачи (2.5.1)-(2.5.4) при .

На основании  лемм 1 и 2  теорема 1 переформулируется следующим образом:

Теорема 2. Если при данном допустимом управлении задачи 1 существуют число , кусочно-гладкая вектор-функция , измеримые вектор-функции , и вектор такие, что выполняются условия (2.5.12)-(2.5.15), то – оптимальное управление задачи 1.

Таким образом, теорема 2 дает возможность использовать сопряженные переменные для доказательства оптимальности полученного решения в задаче ОУ.

Третья  глава посвящена  вопросу нахождения первого приближения геометрии оптимальной траектории при смешанных ограничениях, типа неравенств.

Исследуется вопрос об эффективном (с точки зрения затрат машинных ресурсов) способе нахождения численного решения задач 1 и 2. Требование эффективного решения обусловлено многократным решением задач 1 и 2 при различных значениях параметров. Известно, что достаточно экономичные методы решения задач класса 1 2 базируются на использовании методов прогонки, требующих априорного разделения для каждого множества условий на подмножествах активных и неактивных ограничений. При этом, как правило, используются какие-либо специфические особенности системы ограничений.

В этом случае приемлемой альтернативой сложным  схемам решения задач оптимального управления методом прогонки может  служить схема формирования гипотезы о геометрии оптимальной траектории задачи 1-2, основанная на использовании приближенного решения, получаемого путем дискретизации времени. Преимущества предлагаемого метода заключаются в том, что он не различает отдельные ограничения на ограничения по фазам, управлениям или смешанным ограничениям. Следовательно, метод решения дискретизированной задачи не будет обладать недостатками метода прогонки. Дискретизированная задача является задачей ЛП, и в этой задаче фазовые и управляющие переменные уже неразличимы, что является преимуществом данного подхода. Следовательно, для получения решения дискретизированной задачи необходимо надежное программное средство.

Суть  рассматриваемой схемы выделения  множества активных ограничений  заключается в дискретизации времени и сведении исходной задачи 1-2 к вспомогательной задаче математического программирования с конечным числом переменных. Дифференциальные уравнения при этом заменяются конечно-разностными по схеме Эйлера первого или второго порядка точности. Подобные задачи рассмотрены в трудах Ю.Г. Евтушенко. Решение данной вспомогательной задачи рассматривается как некоторое приближение к решению исходной, и на его основании производится выделение подмножества активных ограничений.

В четвертой главе излагаются различные формы задач линейного программирования (ЛП), куда входят также несобственные задачи. Здесь для решения задачи ЛП предлагается метод введения параметра в целевую функцию. Это дало возможность получить эффективную оценку решения задачи ЛП. Кроме того использовался адаптированный пакет прикладных программ БАЛАНС - 2, обеспечивающий многократное формирование условий нахождения решения и создания необходимых для анализа выходных файлов. Была  использована реализация для ОС Windows 2K-XP базовой версии алгоритма анализа неполных математических моделей (разработанная в 1985 году в IIASA, в рамках проекта Regional Development, на языке "Fortran-IV" для ПЭВМ Altus-2. Авторы: Ким К.В. и Умнов А.Е.), адаптированная для языка С++ на кафедре высшей математики МФТИ в рамках совместных исследований с ЗАО «Оптимизационные системы и технологии». В комплекс программных средств решения задач ЛП были включены модули диагностики и анализа качества (получаемых на основе найденных решений) гипотез об оптимальной геометрии фазовых траекторий. Специальные программные средства были разработаны для решения сопряженных задач, проверки формализма Понтрягина-Дубовицкого-Милютина и прямой проверки оптимальности решения на множестве допустимых вариаций.

В приложении 1 изложен новый эффективный метод интегрирования жестких систем обыкновенных дифференциальных уравнений на базе параметризации явных схем.

В приложении 2 исследуется задача регуляризации вырожденного принципа максимума за счет  введения управляющих параметров в правые части обыкновенных дифференциальных уравнений. Приведен пример аналитического исследования содержательного принципа максимума. 

Выводы:

Предложена  модель взаимодействия двух промышленных предприятий, которая описывается  системой обыкновенных дифференциальных уравнений с фазовыми и смешанными ограничениями.

      Предложены  явные численные методы для интегрирования жестких систем обыкновенных дифференциальных уравнений.

      Предложен метод оценки геометрии оптимальной  траектории.

          Предложен метод регуляризации вырожденного принципа максимума в задаче взаимодействия двух промышленных предприятий.

          Доказана теорема существования  и единственности оптимального  решения в задаче взаимодействия. 

Основные  результаты диссертации  опубликованы в работах:

Дикусар В.В., Старинец Д. В.Управление риском портфеля ценных бумаг  Труды ИСА РАН. Т.31(1) Динамика неоднородных систем. 2007г.С.14-22.

Старинец  Д. В. Методы продолжения при решении краевых задач оптимального управления. Труды ИСА РАН. Т.31(1) Динамика неоднородных систем. 2007г.С.74-80.

Дикусар Э.В., Чекарев Д.А., Старинец Д.В. Достаточные условия экстремума в линейной задаче оптимального управления. Труды ИСА РАН. Т.32(1) Динамика неоднородных систем. 2008г С. 16-23.

Дикусар Э.В., Чекарев Д.А., Старинец Д.В. Сходимость дискретных аппроксимаций. Труды ИСА РАН. Т.32(1) Динамика неоднородных систем. 2008г. С. 101-110.

Дикусар Э.В., Чекарев Д.А., Старинец Д.В. Численно-аналитический метод решения задач оптимального управления со смешанными ограничениями. Труды ИСА РАН. Т.32(1) Динамика неоднородных систем. 2008г.С. 111-122.

Дикусар В.В., Старинец Д.В. Методы интегрирования жестких систем явными методами. Труды 14-ой Байкальской школы-семинара «Методы оптимизации и их приложения». Иркутск-Байкал 2-8-го июля 2008г. т.3 ИСЭМ СО РАН 2008. С. 77-85.

Dikusar V.V., Starinets D.V. Continuation methods for solving boundary value problems. Abstracts of  International Conference «Nonlinear Analysis and Optimization Problems», Montenegrin Academy of Sciences and Arts, Petrovac, Montenegro, October 06th – 10th , 2008. P.37.

Dikusar V.V., Starinets D.V. Determined portfolio dynamic problem. Abstracts of  International Conference «Nonlinear Analysis and Optimization Problems», Montenegrin Academy of Sciences and Arts, Petrovac, Montenegro, October 06th – 10th , 2008. P.38.

Информация о работе Задача оптимального управления ресурсами промышленного предприятия с учетом взаимодействия со смежными предприятиями