Автор работы: Пользователь скрыл имя, 17 Февраля 2011 в 13:48, шпаргалка
работа содержит ответы на вопросы по дисциплине "Математическое программирование".
регулярные функции n действительных переменных.
По своим общим свойствам задачи нелинейного программирования могут
существенно отличаться от линейных. Например, область допустимых решений может уже быть невыпуклой, а экстремум целевой функции может наблюдаться в любой точке допустимой области. Существенно отличаются и методы решения нелинейных задач. Рассмотрим лишь некоторые подходы к решению этих задач.
Прежде всего также справедлив графический подход при решении простейших задач нелинейного программирования. Так, если аргументами задачи являются переменные х1 и х2, то сначала на плоскости этих переменных строится область допустимых решений, а затем с помощью уровней целевой функции f(х1,х2) определяется оптимальная точка в области.
В нелинейном программировании для решения многих задач используется градиентный подход. Имеется целый ряд градиентных методов, сущность которых состоит в поиске оптимального результата с помощью градиента целевой функции - вектора, указывающего направление максимального возрастания цели для рассматриваемой точки. В общем случае процедура поиска совершается в итеративном режиме от первоначально выбранной точки к точкам с лучшим показателем. Пусть, например, . - о6ласть допустимых решений
рассматриваемой задачи, а итеративный процесс расчетов начинается с точки
Далее, сначала
делается переход по градиенту целевой
функции, а затем возврат в
область . по
градиенту к нарушенной границе О2 О3 области .. На рис. 13.3 показано
так, что Ai с
нечетными индексами принадлежат области ., а точки Аi с четными индексами
не принадлежат .. По
мере приближения к оптимальной точке Q направления
рабочих градиентов сближаются. Поэтому
идеальным критерием остановки процесса
будет коллинеарность градиента цели
и градиента нарушенной границы.
67. Понятие о параметрическом и целочисленном программировании.
Постановка и математич модель ЗЦЛП.
В задачах
с неделимыми объектами на переменные
накладываются условия
f=(n,j=1)∑CjXi max
(n,j=1)∑AijXj=bi, i=1,m
xj≥0, j=1,n
xi-целое,j=1,n
Теперь в отличие от общей задачи линейного программирования, оптимальный план не обязательно будет в вершине многогранника планов.Существуют следующие методы решения целочисленных задач:
1.Методы отсечения
2.Комбинаторные
3.Приближенные
методы..
Параметрическое программирование – раздел математического программирования, посвящённый исследованию задач оптимизации, в которых условия допустимости и целевая функция зависят от некоторых детерминированных параметров.
Информация о работе Шпаргалка по "Математическому программированию"