Регрессионная модель как метод прогнозирования: регрессионная модель с одним уравнением. Регрессионная модель с несколькими уравнениями

Автор работы: Пользователь скрыл имя, 25 Августа 2015 в 14:34, контрольная работа

Описание работы

Целью курсовой работы явилось исследование регрессионного анализа и применение его в эконометрике. Для достижения поставленной цели были решены следующие задачи:
– изучение основных положений регрессионного анализа;
– изучить регрессионную модель с одним уравнением;
– рассмотреть регрессионную модель с несколькими уравнениями.

Файлы: 1 файл

Регрессионная модель.docx

— 90.80 Кб (Скачать файл)

 

,

 

где r - коэффициент линейной корреляции Пирсона для переменных x и y; sx и sy - стандартные отклонения для переменных x и y; x,y - средние арифметические для переменных x и y.

Существуют два подхода к интерпретации коэффициента регрессии b. Согласно первому из них, b представляет собой величину, на которую изменяется предсказанное по модели значение ŷi = a + bxi при увеличении значения независимой переменной x на одну единицу измерения, согласно второй - величину, на которую в среднем изменяется значение переменной yi при увеличении независимой переменной x на единицу. На диаграмме рассеяния коэффициент b представляет тангенс угла наклона линии регрессии y = a + bx к оси абсцисс. Знак коэффициента регрессии совпадает со знаком коэффициента линейной корреляции: значение b>0 свидетельствует о прямой линейной связи, значение b < 0 - об обратной. Если b = 0, линейная связь между переменными отсутствует (линия регрессии параллельна оси абсцисс).

Свободный член уравнения регрессии a интерпретируется, если для независимой переменной значение x = 0 имеет смысл. В этом случае y = a, если x = 0. Качество (объясняющая способность) уравнения парной линейной регрессии оценивается с помощью коэффициента детерминации.

После построения уравнения регрессии необходима интерпретация и анализ, а также словесное описание полученных результатов с трактовкой найденных коэффициентов.

 

2.2. Множественная линейная регрессия

 

 

На любой экономический показатель чаще всего оказывает влияние не один, а несколько факторов. В этом случае вместо парной регрессии рассматривается множественная. В общем случае в регрессионный анализ вовлекаются несколько независимых переменных. Это, конечно же, наносит ущерб наглядности получаемых результатов, так как подобные множественные связи в конце концов становится невозможно представить графически. Переменные, объявленные независимыми, могут сами коррелировать между собой; этот факт необходимо обязательно учитывать при определении коэффициентов уравнения регрессии для того, чтобы избежать ложных корреляций.

Заданием множественного регрессионного анализа является построение такого уравнения прямой k-мерном пространстве, отклонение результатов наблюдений от которой были бы минимальными. Используя для этого метод наименьших квадратов, получается система нормальных уравнений, которую можно представить и в матричной форме.

Множественная линейная регрессия - причинная модель статистической связи линейной  между переменной зависимой  y и переменными независимыми  x1,x2,...,xk, представленная уравнением y = b1x1 + b2x2 + ... + bkxk + a = ∑ bixi + a . Коэффициенты b1,b2,...,bk называются нестандартизированными коэффициентами, а - свободным членом уравнения регрессии. Уравнение регрессии существует также в стандартизированном виде, когда вместо исходных переменных используются их z-оценки: zy = ∑ βizi. Здесь zy - z-оценка переменной у; z1,z2,...,zk - z-оценки переменных x1,x2,...,xk; β1,β2,...,βk - стандартизированные коэффициенты регрессии (свободный член отсутствует).

Для того чтобы найти стандартизированные коэффициенты, необходимо решить систему линейных уравнений:

 

β1 + r12β2 + r13β3 + ... + r1kβk = r1y,

r21β1 + β2 + r23β3 + ... + r2kβk = r2y,

r31β1 + r32β2 + β3 + ... + r3kβk = r3y,

...

rk1β1 + rk2β2 + rk3β3 + ... + βk = rky,

в которой rij - коэффициенты линейной корреляции Пирсона для переменных xi и xj; riy - коэффициент корреляции Пирсона для переменных xi и y. [8]

Нестандартизированные коэффициенты регрессии вычисляются по формуле bi = βi ∙ sy / si, где sy - стандартное отклонение переменной y; si - стандартное отклонение переменной хi. Свободный член уравнения регрессии находится по формуле a = y - ∑ bixi, где y - среднее арифметическое переменной y, xi - средние арифметические для переменных xi.

В настоящее время используются два подхода к интерпретации нестандартизированных коэффициентов линейной регрессии bi. Согласно первому из них, bi представляет собой величину, на которую изменится предсказанное по модели значение ŷ = ∑ bixi при увеличении значения независимой переменной xi на единицу измерения; согласно второму - величину, на которую в среднем изменяется значение переменной y при увеличении независимой переменной xi на единицу. Значения коэффициентов bi существенно зависят от масштаба шкал, по которым измеряются переменные y и xi, поэтому по ним нельзя судить о степени влияния независимых переменных на зависимую. Свободный член уравнения регрессии a равен предсказанному значению зависимой переменной ŷ в случае, когда все независимые переменные xi = 0. [8]

Стандартизированные коэффициенты βi являются показателями степени влияния независимых переменных xi на зависимую переменную y. Они интерпретируются как "вклад" соответствующей независимой переменной в дисперсию (изменчивость) зависимой переменной.

Качество (объясняющая способность) уравнения множественной линейной регрессии измеряется коэффициентом множественной детерминации, который равен квадрату коэффициента корреляции множественной R².

Предполагается, что все переменные  в уравнении множественной линейной регрессии являются количественными. При необходимости включить в модель номинальные переменные используется техника dummy-кодирования.

 

 

 

 

 

 

 

 

 

ЗАКЛЮЧЕНИЕ

 

В настоящее время регрессионный анализ используется как в естественнонаучных исследованиях, так и в обществоведении.

В практических исследованиях возникает необходимость аппроксимировать (описать приблизительно) зависимость между переменными величинами у и х. Ее можно выразить аналитически с помощью формул и уравнений и графически в виде геометрического места точек в системе прямоугольных координат. Для выражения регрессии служат эмпирические и теоретические ряды, их графики — линии регрессии, а также корреляционные уравнения (уравнения регрессии) и коэффициент линейной регрессии.

Показатели регрессии выражают корреляционную связь двусторонне, учитывая изменение средней величины признака у при изменении значений xi признака х, и, наоборот, показывают изменение средней величины признака х по измененным значениям yi признака у.

Форма связи между показателями может быть разнообразной. И поэтому задача состоит в том, чтобы любую форму корреляционной связи выразить уравнением определенной функции (линейной, параболической и т.д.), что позволяет получать нужную информацию о корреляции между переменными величинами у и х, предвидеть возможные изменения признака у на основе известных изменений х, связанного с у корреляционно.

Уравнение регрессии позволяет найти значение зависимой переменной, если величина независимой или независимых переменных известна.

Главной причиной неточности прогноза является не столько неопределенность экстраполяции линии регрессии, сколько значительная вариация показателя за счет неучтенных в модели факторов. Ограничением возможности прогнозирования служит условие стабильности неучтенных в модели параметров и характера влияния учтенных факторов модели. Если резко меняется внешняя среда, то составленное уравнение регрессии потеряет свой смысл. Нельзя подставлять в уравнение регрессии такие значения факторов, которые значительно отличаются от представленных/ Рекомендуется не выходить за пределы одной трети размаха вариации параметра как за максимальное, так и за минимальное значения фактора.

 

 

 

 

 

 

 

 

 

 

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

 

  1. Басовский Л.Е., Прогнозирование и планирование в условиях рынка, учебное пособие.– М.: ИНФРА–М, - 2002.–260с.
  2. Бережная Е.В., Бережной В.И., Математические методы моделирования экономических систем, учебное пособие, 2е изд.,– М.: Финансы и статистка, 2005,– 432с.
  3. Гладилин А.В., Эконометрика: учебное пособие. – М.:КНОРУС, 2006.–232с.
  4. Домбровский В.В., Эконометрика: учебник.– М.: Новый учебник, 2004.–342с.
  5. Елисеева И.И., Эконометрика: учебник для вузов.– М.: Финансы и статистика, 2002.–344с.
  6. Елисеева И.И., Эконометрика: учебник, 2е изд.–- М.: Финансы и статистика, 2005.–576с.
  7. Елисеева И.И., Практикум по эконометрике: учебное пособие.– М.: Финансы и статистика, 2002.–192с.
  8. Зандер Е.В., Эконометрика: учебно-методический комплекс, – Красноярск: РИО КрасГУ, 2003.– 36с.
  9. Колемаев В.А. Эконометрика: учебник, - М.: ИНФРА-М, 2006. – 160с.

 

 

 

 


Информация о работе Регрессионная модель как метод прогнозирования: регрессионная модель с одним уравнением. Регрессионная модель с несколькими уравнениями