Автор работы: Пользователь скрыл имя, 25 Августа 2015 в 14:34, контрольная работа
Целью курсовой работы явилось исследование регрессионного анализа и применение его в эконометрике. Для достижения поставленной цели были решены следующие задачи:
– изучение основных положений регрессионного анализа;
– изучить регрессионную модель с одним уравнением;
– рассмотреть регрессионную модель с несколькими уравнениями.
МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ
ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ
ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ
«УФИМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ЭКОНОМИКИ И СЕРВИСА»
Кафедра экономики и менеджмента
КОНТРОЛЬНАЯ РАБОТА
По дисциплине «Методы моделирования и прогнозирования в национальной экономике»
На тему: Регрессионная модель как метод прогнозирования: регрессионная модель с одним уравнением. Регрессионная модель с несколькими уравнениями
Выполнил:студент БЭЗП-32
Еперов В.А.
Проверила: доцент к.э.н
Ризванова М.А.
Уфа 2015
СОДЕРЖАНИЕ
Актуальность выбранной темы определяется тем, что в эконометрике широко используются методы статистики. Во многих практических задачах прогнозирования, изучая различного рода связи в экономических, производственных системах, необходимо на основании экспериментальных данных выразить зависимую переменную в виде некоторой математической функции от независимых переменных регрессоров, то есть построить регрессионную модель. Регрессионный анализ позволяет:
–производить расчет регрессионных моделей путем определения значений параметров – постоянных коэффициентов при независимых переменных – регрессорах, которые часто называют факторами;
–проверить гипотезу об адекватности модели имеющимся наблюдениям;
–использовать модель для прогнозирования значений зависимой переменной при новых или ненаблюдаемых значениях независимых переменных.
Целью курсовой работы явилось исследование регрессионного анализа и применение его в эконометрике. Для достижения поставленной цели были решены следующие задачи:
– изучение основных положений регрессионного анализа;
– изучить регрессионную модель с одним уравнением;
– рассмотреть регрессионную модель с несколькими уравнениями.
Предметом исследования явились математико-статистические методы в экономических исследованиях.
Объект исследования контрольной работы – регрессионный анализ в эконометрике.
Информационную базу составили труды отечественных ученых-экономистов в области эконометрических исследований, публикации.
Ставя цель дать количественное описание взаимосвязи между экономическими переменными, эконометрика прежде всего связана с методами регрессии и корреляции.
Регрессия (лат. regressio - обратное движение, переход от более сложных форм развития к менее сложным) - одно из основных понятий в теории вероятности и математической статистике, выражающее зависимость среднего значения случайной величины от значений другой случайной величины или нескольких случайных величин. Это понятие введено Фрэнсисом Гальтоном в 1886. [5]
Теоретическая линия регрессии - это та линия, вокруг которой группируются точки корреляционного поля и которая указывает основное направление, основную тенденцию связи. [2, с.256]
Теоретическая линия регрессии должна отображать изменение средних величин результативного признака «y» по мере изменения величин факторного признака «x» при условии полного взаимопогашения всех прочих – случайных по отношению к фактору «x» - причин. Следовательно, эта линия должна быть проведена так, чтобы сумма отклонений точек поля корреляции от соответствующих точек теоретической линии регрессии равнялась нулю, а сумма квадратов этих отклонений была ба минимальной величиной.
y=f(x) - уравнение регрессии - это формула статистической связи между переменными.
Прямая линия на плоскости (в пространстве двух измерений) задается уравнением y=a+b*х. Более подробно: переменная y может быть выражена через константу (a) и угловой коэффициент (b), умноженный на переменную x. Константу иногда называют также свободным членом, а угловой коэффициент - регрессионным или B-коэффициентом. [8]
Важным этапом регрессионного анализа является определение типа функции, с помощью которой характеризуется зависимость между признаками. Главным основанием должен служить содержательный анализ природы изучаемой зависимости, ее механизма. Вместе с тем теоретически обосновать форму связи каждого из факторов с результативным показателем можно далеко не всегда, поскольку исследуемые социально-экономические явления очень сложны и факторы, формирующие их уровень, тесно переплетаются и взаимодействуют друг с другом. Поэтому на основе теоретического анализа нередко могут быть сделаны самые общие выводы относительно направления связи, возможности его изменения в исследуемой совокупности, правомерности использования линейной зависимости, возможного наличия экстремальных значений и т.п. Необходимым дополнением такого рода предположений должен быть анализ конкретных фактических данных.
Приблизительно представление о линии связи можно получить на основе эмпирической линии регрессии. Эмпирическая линия регрессии обычно является ломанной линией, имеет более или менее значительный излом. Объясняется это тем, что влияние прочих неучтенных факторов, оказывающих воздействие на вариацию результативного признака, в средних погашается неполностью, в силу недостаточно большого количества наблюдений, поэтому эмпирической линией связи для выбора и обоснования типа теоретической кривой можно воспользоваться при условии, что число наблюдений будет достаточно велико. [2, с.257]
Одним из элементов конкретных исследований является сопоставление различных уравнений зависимости, основанное на использовании критериев качества аппроксимации эмпирических данных конкурирующими вариантами моделей. Наиболее часто для характеристики связей экономических показателей используют следующие типы функций:
Рисунок 1. Основные типы кривых, используемые при количественной оценке связей между двумя переменными
Модель с одной объясняющей и одной объясняемой переменными – модель парной регрессии. Если объясняющих (факторных) переменных используется две или более, то говорят об использовании модели множественной регрессии. При этом, в качестве вариантов могут быть выбраны линейная, экспоненциальная, гиперболическая, показательная и другие виды функций, связывающие эти переменные.
Для нахождения параметров а и b уравнения регрессии используют метод наименьших квадратов. При применении метода наименьших квадратов для нахождения такой функции, которая наилучшим образом соответствует эмпирическим данным, считается, что сумка квадратов отклонений эмпирических точек от теоретической линии регрессии должна быть величиной минимальной.
Критерий метода наименьших квадратов можно записать таким образом:
или
Следовательно, применение метода наименьших квадратов для определения параметров a и b прямой, наиболее соответствующей эмпирическим данным, сводится к задаче на экстремум. [2, c.258]
Относительно оценок можно сделать следующие выводы:
– оценки метода наименьших квадратов являются функциями выборки, что позволяет их легко рассчитывать;
–оценки метода наименьших квадратов являются точечными оценками теоретических коэффициентов регрессии;
–эмпирическая прямая регрессии обязательно проходит через точку x, y;
–эмпирическое уравнение регрессии построено таким образом, что сумма отклонений равно нулю.
Параметр b в уравнении – это коэффициент регрессии. При наличии прямой корреляционной зависимости коэффициент регрессии имеет положительное значение, а в случае обратной зависимости коэффициент регрессии отрицательный. Коэффициент регрессии показывает на сколько в среднем изменяется величина результативного признака «y» при изменении факторного признака «x» на единицу. Геометрически коэффициент регрессии представляет собой наклон прямой линии, изображающей уравнение корреляционной зависимости, относительно оси «x» (для уравнения ).
Раздел многомерного статистического анализа, посвященный восстановлению зависимостей, называется регрессионным анализом. Термин «линейный регрессионный анализ» используют, когда рассматриваемая функция линейно зависит от оцениваемых параметров (от независимых переменных зависимость может быть произвольной). Теория оценивания
неизвестных параметров хорошо развита именно в случае линейного регрессионного анализа. Если же линейности нет и нельзя перейти к линейной задаче, то, как правило, хороших свойств от оценок ожидать не приходится. Продемонстрируем подходы в случае зависимостей различного вида. Если зависимость имеет вид многочлена (полинома). Если расчёт корреляции характеризует силу связи между двумя переменными, то регрессионный анализ служит для определения вида этой связи и дает возможность для прогнозирования значения одной (зависимой) переменной отталкиваясь от значения другой (независимой) переменной. Для проведения линейного регрессионного анализа зависимая переменная должна иметь интервальную (или порядковую) шкалу. В то же время, бинарная логистическая регрессия выявляет зависимость дихотомической переменной от некой другой переменной, относящейся к любой шкале. Те же условия применения справедливы и для пробит-анализа. Если зависимая переменная является категориальной, но имеет более двух категорий, то здесь подходящим методом будет мультиномиальная логистическая регрессия можно анализировать и нелинейные связи между переменными, которые относятся к интервальной шкале. Для этого предназначен метод нелинейной регрессии. [10]
Можно выделить три основных класса моделей, которые применяются для анализа и прогнозирования экономических процессов:
Модель с одной объясняющей и одной объясняемой переменными – модель парной регрессии. Если объясняющих (факторных) переменных используется две или более, то говорят об использовании модели множественной регрессии. При этом, в качестве вариантов могут быть выбраны линейная, экспоненциальная, гиперболическая, показательная и другие виды функций, связывающие эти переменные.
Линейная регрессия представляет собой линейную функцию между условным математическим ожиданием зависимой переменной Y и одной объясняющей переменной X:
,
где - значения независимой переменной в i-ом наблюбдении, i=1,2,…,n. Принципиальной является линейность уравнения по параметрам , . Так как каждое индивидуальное значение отклоняется от соответствующего условного математического ожидания, тогда вданную формулу необходимо ввести случайное слагаемое , тогда получим:
Данное соотношение называется теоретической линейной регрессионной моделью, а и - теоретическими параметрами (теоретическими коэффициентами) регрессии, - случайным отклонением. Следовательно, индивидуальные значения представляются в виде суммы двух компонент – систематической и случайной [12]
Для определения значений теоретических коэффициентов регрессии необходимо знать и использовать все значения переменных X и Y генеральной совокупности, что невозможно. задачи регрессионного линейного анализа состоят в том, чтобы по имеющимся статистическим данным ( ), i=1,…,n для переменных X и Y:
Парная линейная регрессия - это причинная модель статистической связи линейной между двумя количественными переменными «x» и «у», представленная уравнением , где х - переменная независимая, y - переменная зависимая. Коэффициент регрессии «b» и свободный член уравнения регрессии «a» вычисляются по формулам: