Автор работы: Пользователь скрыл имя, 25 Декабря 2009 в 16:30, Не определен
Работа связанна с описанием математических методов принятий управленческих решений
Методы принятия
управленческих решений.
Проблема принятия решений составляет суть любой целенаправленной человеческой деятельности. Вместе с тем она, несмотря на всё многообразие возможных условий, и ситуаций, в которых осуществляется выбор, носит достаточно универсальный характер. Для ситуаций, в которых происходит выбор решений, характерны:
1) Наличие цели (целей): необходимость принятия решения диктуется только наличием некоторой цели, которую следует достичь. Если цель отсутствует, то не возникает и необходимость принимать какое-либо решение.
2) Наличие альтернативных линий поведения: решения принимаются в условиях, когда существует более одного способа достижения поставленной цели. Каждый из способов может характеризоваться различными степенями и различными вероятностями достижения цели, требовать различных затрат.
3) Наличие ограничивающих факторов: естественно, что лицо, принимающее решение, не обладает бесконечными возможностями. Все множества ограничивающих факторов можно разбить на три группы:
а) экономические факторы – денежные средства, трудовые и производственные ресурсы, время и т.п.
б) технические факторы – габариты, вес, энергопотребление, надёжность, точность и т.п.
в) социальные факторы, учитывающие требования человеческой этики и морали.
Процесс принятия управленческого решения – это преобразование исходной информации (информации состояния) в выходную информацию (информацию управления - приказ). Решение может быть формальным и творческим. Принято считать, что если преобразование информации выполняется с помощью математических моделей, то выработанное решение считается формальным, если решение появляется в результате скрытой работы интеллекта человека, принимающего решение, то оно - творческое.
Такое деление в достаточной степени условно, поскольку чисто формального или чисто творческого решения не существует. Если решение вырабатывается с помощью математической модели, то знания и опыт человека (элементы творчества) используются при её создании, а интуиция (тоже момент творчества) – в момент, когда он задаёт то или иное значение параметра исходной информации или выбирает из множества альтернативных вариантов, полученных с помощью математической модели, один в качестве решения на управление. Если основным инструментом выработки решения является интеллект человека, то формальные методы, носителем которых практически является вся наука, скрыто присутствуют в его знаниях и опыте.
В соответствии с подразделением на творческие и формальные всё множество проблем, сопутствующих любому процессу принятия решений, условно делится на два класса: проблемы концептуального характера и проблемы формально-математического и вычислительного характера.
К концептуальным проблемам относятся сложные логические проблемы, которые невозможно решить с применением только формально-математических методов и ЭВМ. Часто эти проблемы уникальны в том смысле, что они решаются впервые и не имеют прототипов в прошлом. Концептуальные проблемы обычно решаются на уровне руководителей с привлечением группы экспертов, в качестве которых выступают высококвалифицированные специалисты из различных областей науки и практической деятельности. При решении концептуальных проблем наибольший вес имеют не формально-математические методы, а эрудиция, опыт и интуиция людей. Формальные методы здесь играют вспомогательную роль как средство, облегчающее и организующее эвристическую деятельность людей. К числу концептуальных относятся, в частности, такие проблемы, как анализ и выбор целей, выявление совокупностей показателей, характеризующих следствия принятого решения, выбор из их числа критериев оптимальности и т.п. Формализация эвристических процедур является содержанием так называемой неформальной теории принятия решений.
В дальнейшем предполагается, что цели управления, соответствующие им критерии оптимальности и ограничения заданы и обсуждению не подлежат. То есть происходит изучение лишь количественной или формальной теории принятия решений.
Процесс принятия решений является сложной итерационной процедурой. Структурная схема процесса принятия решений может иметь вид:
Общая постановка задачи принятия решения (ЗПР).
Пусть эффективность выбора того или иного решения определяется некоторым критерием F, допускающим количественное представление. В общем случае все факторы, от которых зависит эффективность выбора, можно разбить на две группы:
а) контролируемые (управляемые) факторы, выбор которых определяется лицами, принимающими решения. Обозначим эти факторы X1,X2,…,XL.
б) неконтролируемые (неуправляемые) факторы, характеризующие условия, в которых осуществляется выбор и на которые лица, принимающие решения, влиять не могут. В состав неконтролируемых факторов может входить и время t. Неконтролируемые факторы в зависимости от информированности о них подразделяют на три подгруппы:
В соответствии
с выделенными факторами
F=F(X1,X2,…,XL, A1,A 2,…, A P, Y1,Y 2,…, Yg, Z1,Z 2,…, ZZ, t)
Значения контролируемых факторов обычно ограничены рядом естественных причин, например, ограниченностью располагаемых ресурсов. То есть, определены (имеются) области x1, x2,…, xL пространства, внутри которых расположены возможные (допустимые) значения факторов X1,X2,…,XL. Аналогично могут быть ограничены и области возможных значений неконтролируемых факторов. Величины X, A, Y, Z в общем случае могут быть скалярами, векторами, матрицами.
Поскольку критерий оптимальности есть количественная мера степени достижения цели управления, математически цель управления выражается в стремлении к максимально возможному увеличению (или уменьшению) значения критерия F, что можно записать в виде: Fàmax (или min).
Средством достижения этой цели является соответствующий выбор управлений X1,X2,…,XL из областей x1, x2,…, xL их допустимых значений. Таким образом, общая постановка задачи принятия решений может быть сформулирована так: при заданных значениях и характеристиках фиксированных неконтролируемых факторов A 2,…, AP, Y1,Y 2,…, Yg с учётом неопределённых факторов Z1,Z 2,…, ZZ найти оптимальные значения X1опт,X2опт,…,XLопт из областей x1, x2,…, xL их допустимых значений, которые по возможности обращали бы в максимум (минимум) критерий оптимальности F.
Задачи принятия решений классифицируют по трём признакам:
а) по количеству целей управления и соответствующих им критериев оптимальности ЗПР делят на одноцелевые или однокритериальные (скалярные) и многоцелевые или многокритериальные (векторные);
б) по наличию или отсутствию зависимости критерия оптимальности и ограничений от времени ЗПР делят на статические (не зависящие от времени) и динамические (зависящие от времени).
Динамическим ЗПР присущи две особенности:
в) по наличию случайных
и неопределённых факторов, этот признак
называется “определённость-риск-
Рассмотрим пример однокритериальной статической детерминированной ЗПР
Пусть необходимо отображать некоторое количество информационных моделей, например, картографическую информацию. Для отображения любой из моделей всегда требуется n различных задач З1,З2,…,ЗN(отображение символов, отображение векторов, поворот и перемещение изображения, масштабирование и т.п.). Все задачи взаимно независимы. Для решения этих задач могут быть использованы m различных микропроцессоров M1,M2,…,MM. В течение времени t микропроцессор Mj может решить aij задач типа Зi (i=1,…,n; j=1,…,m), то есть решить задачу Зi несколько раз по одному и тому же алгоритму, но для различных исходных данных.
Информационную модель можно отображать только в том случае, если она содержит полный набор результатов решения всех задач З1,З2,…,ЗN. Требуется распределить задачи по микропроцессорам так, чтобы число информационных моделей, синтезированных за время t, было максимально. Иначе говоря, необходимо указать, какую часть времени t микропроцессор Mj должен занимать решением задачи Зi. Обозначим эту величину через xij (если эта задача не будет решаться на данном микропроцессоре, то xij=0). Очевидно, что общее время занятости каждого микропроцессора решением всех задач не должно превышать общего запаса времени t, ”доля» - единицы. Таким образом, имеем следующие ограничительные условия:
Общее количество решений Ni задачи Зi, полученных всеми микропроцессорами вместе:
Так как информационная модель может быть синтезирована лишь из полного набора результатов решения всех задач, то количество информационных моделей F будет определяться минимальным из числа Ni.
Итак, имеем следующую математическую модель: требуется найти такие xij,чтобы обращалась в минимум функция F:
при
Принятие решений в условиях неопределённости.
Стоит отметить принципиальное различие между стохастическими факторами, приводящими к принятию решения в условиях риска, и неопределёнными факторами, приводящими к принятию решения в условиях неопределённости. И те, и другие приводят к разбросу возможных исходов результатов управления. Но стохастические факторы полностью описываются известной стохастической информацией, эта информация и позволяет выбрать лучшее в среднем решение. Применительно к неопределённым факторам подобная информация отсутствует.
В общем случае неопределённость может быть вызвана либо противодействием разумного противника, либо недостаточной осведомлённостью об условиях, в которых осуществляется выбор решения.
Принятие решений в условиях разумного противодействия является объектом исследования теории игр.
Рассмотрим принципы выбора решений при наличии недостаточной осведомлённости относительно условий, в которых осуществляется выбор. Такие ситуации принято называть “играми с природой”.
В терминах “игр с природой” задача принятия решений может быть сформулирована следующим образом:
Пусть лицо, принимающее решение, может выбрать один из m возможных вариантов своих решений X1,X2,…,XM и пусть относительно условий , в которых будут реализованы возможные варианты, можно сделать n предположений Y1,Y2,…,YN. Оценки каждого варианта решения в каждых условиях (Xi ,Yi) известны и заданы в виде матрицы выигрышей лица, принимающего решения A=|aij|. Предположим вначале, что априорная информация о вероятностях возникновения той или иной ситуации Yj отсутствует.
Теория статистических решений предлагает несколько критериев оптимальности выбора решений. Выбор того или иного критерия неформализуем, он осуществляется человеком, принимающим решения, субъективно, исходя из его опыта, интуиции и т.п. Рассмотрим эти критерии.