Применение экономико-математического моделирования для обоснования

Автор работы: Пользователь скрыл имя, 14 Декабря 2010 в 22:34, курсовая работа

Описание работы

Между тем коммерческие расчеты сегодня не ограничиваются школьной математикой. Вычисления, связанные с кредитными отношениями, работой с биржами и банками, прогнозированием п. риском, не укладываются в элементарную арифметику.

И дело здесь не только в умении правильно выстроить колонки цифр. Современный бизнес требует современного экономического мышления, в немалой степени основанного на специальных математических методах. Доход, прибыль, налог, ссуда, дивиденд, рентабельность – все это цифры, и тут без хорошей математики просто не обойтись: чем правильнее расчет, тем прибыльнее результат.

Содержание работы

Введение
1 Раздел
Теоретические основы экономико-математического моделирования

1.История развития экономико-математического моделирования как науки
2.Первая и вторая теория двойственности
3.Экономико-математическая модель использования заготовленных кормов
2 Раздел
Методы решения задач линейного программирования

2.1 Графический метод

2.2 Симплекс метод

2.3 Двойственные задачи

3 Раздел
Применение экономико-математического моделирования для обоснования

плановых прогнозных решений.

Заключение

Список литературы

Файлы: 1 файл

мсэп курсовая.doc

— 254.50 Кб (Скачать файл)

         (3.4) 

базис Сбазис b С1 С2 Сn
Х1 Х2 Xn
X1базис С1базис b1 a11 a12 a1n
Х2базис С2базис b2 a21 a22 a2n
Хмбазис Сmбазис bm am1 am2 amn
    (Cбазис,b)

Рис. 3.1. Симплексная таблица 

      Правила заполнения первой симплексной таблицы

    1. Вместо С1, С2, …, Сn записываем соответствующие коэффициенты целевой функции.
    2. Вместо аij записываем коэффициенты при неизвестных из основных ограничений задачи.
    3. Вместо Хiбазис записываем имена переменных, вошедших в базис, в той последовательности, в которой они образуют единичную матрицу.
    4. Вместо Сiбазис записываем коэффициенты целевой функции при соответствующих базисных переменных.
    5. Вместо bi записываем элементы  вектора правых частей задачи.
    6.  

      Оптимальное значение переменных соответствует  элементам из столбца «b» последней симплексной таблицы, а  максимальное значение целевой функции содержимому ячейки (сбазис ,b). 
 
 
 
 
 
 
 

2.3 Двойственные  задачи 
 

      Прежде  чем строить двойственную задачу, предварительно исходную задачу линейного программирования нужно привести к виду, где все ограничения неравенства имеют один тип, а целевая функция  - направление, противоположное типу ограничений неравенств.

Правила построения двойственной задачи.

    1. Целевая функция в двойственной задаче меняет своё направление на противоположное.
    2. Количество двойственных переменных равно количеству основных ограничений исходной задачи.
    3. Двойственная переменная, соответствующая ограничению равенству, является неограниченной по знаку, а  соответствующая ограничению неравенству – неотрицательной.
    4. Вектор правых частей ограничений исходной задачи является вектором коэффициентов целевой функции в двойственной задаче.
    5. Вектор коэффициентов целевой функции исходной задачи является вектором правых частей ограничений в двойственной задаче.
    6. Матрица коэффициентов ограничений двойственной задачи – это транспонированная матрица коэффициентов исходной задачи, т.е. строка коэффициентов исходной задачи, является столбцом коэффициентов двойственной задачи.
    7. Неотрицательным переменным исходной задачи соответствуют ограничения неравенства в двойственной задаче,  причем тип неравенства меняется на противоположный, по сравнению с исходной задачей. А неограниченной переменной исходной задачи соответствует ограничение равенство в двойственной задаче.

     Соотношение двойственности является симметричным, т.е. двойственная  задача по отношению к двойственной совпадает с исходной.

     Если  исходная задача  линейного программирования записана в стандартном виде:    (с, х)→ max

                   (4.1)

то соответствующая ей двойственная задача записывается следующим образом: 

         

     (b, y)→min

                   (4.2) 

   Для следующей задачи линейного программирования построим двойственную задачу.

             

                 3x1 + 3x2 – 4x3 → max

             
 
 

-2х1 - х2 + 3х3   ≤ -18        у1

1      -      5 х3 ≤ 12         у2   

1 - 2 х2   + х = 14         у3

х1 ≥ 0;  х2≥ 0; х3 ≥ 0         

Вводом двойственные переменные

-18у1+12у2+14у3              min

-2у1 + 4у2 + 3у 3≥ 3

1         -    2у3       ≥3

1 - 5у2 + у ≥ -4

у1 ≥0; у2≥0           
 
 
 
 

3 Раздел

   Применение экономико-математического  моделирования для обоснования      

   плановых прогнозных решений.

         Существуют следующие предпосылки использования методов экономико-математического моделирования.

       Важнейшими из них являются, во-первых, высокий уровень знания экономической теории, экономических процессов и явлений, методологии их качественного анализа; во-вторых, высокий уровень математической подготовки, владение экономико-математическими методами. Прежде чем приступить к разработке моделей, необходимо тщательно проанализировать ситуацию, выявить цели и взаимосвязи, проблемы, требующие решения, и исходные данные для их решения, ввести систему обозначений, и только тогда описать ситуацию в виде математических соотношений.

 

Модель 1

       Построить модель на оптимальное  сочетание фуражных зерновых, овощей, многолетних трав и молочного  скотоводства. Площадь посева многолетних  трав должна быть не менее  50 % от площади пашни. Молока произвести не менее 300 ц. Критерий оптимальности – максимум валовой продукции в денежном выражении. 

Показатели Приходится  на 1 ц Объем ресурсов
Зерновых  фуражных культур Овощей Сена многолет. трав Молока
1. Пашня,  га 0,0323 0,009 0,0165 - 1500
2.Трудовые  ресурсы (всего), чел.-ч 0,5 2,3 0,8 5,2 850000
2.Трудовые  ресурсы в напр. период, чел.-ч 0,03 0,4 0,02 1,2 28670
4.Корма,  ц к.ед. 0,9 0,03 0,2 1,5 -
5.Стоимость  продукции, руб. - 250 - 760  

х1 – валовой сбор зерна

х2 – валовой сбор овощей

х3 – валовой сбор многолетних трав

х4 – валовой сбор молока 

Целевая функция

250х2 + 760х4          мах 

Ограничения

  1. По площади пашни

         0,0323х1 + 0,009х2 + 0,0165х3   1500

  1. По трудовым ресурсам

    0,5х1 + 2,3х2 + 0,8х3 + 5,2х4  ≤ 850000

  1. По трудовым ресурсам в напряженный период

    0,03х1 +0,4х2 + 0,02х3 + 1,2х4 ≤ 28670

  1. По кормам, ц к. ед.

        0,9х1 + 0,03х2 + 0,2х3 ≥ 1,5х4

  1. По площади посева многолетних трав

    0,0165х3 ≥ 750

  1. По производству молока

    Х4 ≥ 300

  1. По не отрицательности

    х1 ≥ 0 ; х2 ≥ 0 ; х3 ≥ 0 ; х4 ≥ 0 
     
     
     
     
     
     
     
     

Модель 2

       Распределить сельскохозяйственные  работы по маркам тракторов  таким образом, чтобы общие  затраты на выполнение работ  были минимальными. Исходные данные  приведены в таблице. 

Вид работы Себестоимость 1 га работ, руб. Объем работ, усл. га
С-80

(2 шт.)

ДТ 54

(10 шт.)

«Беларусь» (5 шт.) КПД-35

(2 шт.)

Культивация 0,80 1,00 0,90 0,85 1500
Пахота 2,40 3,00 3,40 3,20 2000
Сев - - 1,00 0,95 800
Боронование 0,20 0,27 0,25 0,27 700
Сезонная  норма работ,  усл. га. 1000 1600 1800 600 5000

4750

 

Xij - Vi производимый j-й машиной

        х11х12х13х14

        х21х22х23х24

 X=  х31х32х33х34

        х41х42х43х44

         

Целевая функция

0,8х11 + 1х12 + 0,9х13 + 0,85х14 + 2,4х21 + 3х22 + 3,4х23 + 3,2х24 + 1х33 + 0,95х34 + +0,2х41 + 0,27х42 + 0,25х43 + 0,27х44              min 

Ограничения

  1. По виду работ

х11 + х12 + х13 + х14 = 1500

х21 + х22 + х23 + х24 = 2000

х33 + х34 = 800

х41 + х42 + х43 + х44 = 700

  1. По марки машин

х11 + х21 + х41 = 1000

х12 + х22 + х42 1600

х13 + х23 + х33 + х43=1800

х14 + х24 + х34 + х44 =600

  1. По не отрицательности

 Xij ≥ 0  i=1, 2, 3   j=1, 2, 3 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Модель 3

      1. Пашня, отведенная под кормовые цели - 490 га, пастбища - 800 га, сенокосы – 300 га.

      2. На все поголовье скота необходимо произвести не менее 25000 ц к.ед.

      3. Всего в хозяйстве будет 500 голов-коров. В году на 1 голову коровы затрачивается в натуре: концентрированных - от 7 до 12 ц, грубых - от 20 до 30 ц, сочных - от зеленых - от 60 до 100 ц,.

      4. Покупные комбикорма составят не более 3000 ц.

      5. Сведения о кормовых культурах (в расчете па I га посева) 
 

Показатели Зерновые фуражные Многолетние травы Однолетние травы на зеленый корм Силосные Корнеплоды Пастбища Сенокосы
На  сено На зеленый корм
1. Урожайность,  ц с 1 га 27 36 120 26 140 350 100 16
2. Содержание  ц. к. ед. в 1 ц корма 1,1 0,5 0,2 0,4 0,2 0,1 0,18 0,45
3. Стоимость  материальных затрат, руб. 190 95 100 110 140 450 50 60

Информация о работе Применение экономико-математического моделирования для обоснования